Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 204878 by mnjuly1970 last updated on 29/Feb/24

    prove that:        (e)^(1/4)  < ∫_0 ^( 1) e^( t^2 ) dt< ((1 + e)/2)

provethat:e4<01et2dt<1+e2

Answered by witcher3 last updated on 29/Feb/24

let f(x)=e^x^2    f′(x)=2xe^x^2  ;f′′(x)=(2+4x^2 )e^x^2  ≥0  f is convex Let C_f ={(x,f(x));x∈R^2 }  Γ: tangent to Cf at(1/2)  Γ=f′((1/2))(x−(1/2))+f((1/2))=e^(1/4) (x−(1/2))+e^(1/4)   =e^(1/4) x+(e^(1/4) /2);Since f is convex⇒f(x)≥xe^(1/4) +(e^(1/4) /2)  ⇒∫_0 ^1 e^x^2  dx≥∫_0 ^1 (xe^(1/4) +(e^(1/4) /2))dx=e^(1/4) =(e)^(1/4)   f(x)=e^x^2   applie lagrange theorem in [0,t]  ⇒∃_c ∈[0,t] suche f(t)=f(0)+tf′(c)  f′′(x)≥0⇒f′ is increase ⇒f′(c)≤f′(t)  ⇒f(t)=1+t(2ce^c^2  )≤1+2t^2 e^t^2    ⇒∫_0 ^1 f(t)dt≤∫_0 ^1 (1+2t^2 e^t^2  )dt=∫_0 ^1 1dt+∫_0 ^1 t.(2te^t^2  )dt  u=t,v′=2te^t^2   IBP⇒  ∫_0 ^1 e^t^2  dt≤1+[te^t^2  ]_0 ^1 −∫_0 ^1 e^t^2  dt⇒2∫_0 ^1 e^t^2  dt≤1+e  ⇒∫_0 ^1 e^t^2  dt≤((1+e)/2)  ⇔(e)^(1/4) ≤∫_0 ^1 e^t^2  dt≤((1+e)/2)

letf(x)=ex2f(x)=2xex2;f(x)=(2+4x2)ex20fisconvexLetCf={(x,f(x));xR2}Γ:tangenttoCfat12Γ=f(12)(x12)+f(12)=e14(x12)+e14=e14x+e142;Sincefisconvexf(x)xe14+e14201ex2dx01(xe14+e142)dx=e14=e4f(x)=ex2applielagrangetheoremin[0,t]c[0,t]suchef(t)=f(0)+tf(c)f(x)0fisincreasef(c)f(t)f(t)=1+t(2cec2)1+2t2et201f(t)dt01(1+2t2et2)dt=011dt+01t.(2tet2)dtu=t,v=2tet2IBP01et2dt1+[tet2]0101et2dt201et2dt1+e01et2dt1+e2e401et2dt1+e2

Commented by mnjuly1970 last updated on 29/Feb/24

thanks alot sir

thanksalotsir

Commented by witcher3 last updated on 29/Feb/24

withe pleasur barak[alah fik

withepleasurbarak[alahfik

Answered by mr W last updated on 29/Feb/24

Commented by mr W last updated on 01/Mar/24

x>0  y=e^x^2   ⇒y(0)=1, y(1)=e  y′=2xe^x^2  >0 ⇒↗  y′′=2(1+2x)e^x^2  >0 ⇒ ⌣  ∫_0 ^1 e^x^2  dx=area under blue curve                  <area under red line                   >area under green line   red area =((1+e)/2)×1=((1+e)/2)  tangent at x=p:  y=[1+2p(p−x)]e^p^2    y(0)=(1+2p^2 )e^p^2    y(1)=(1+2p^2 −2p)e^p^2    green area =((y(0)+y(1))/2)×1=(1+2p^2 −p)e^p^2    with p=(1/2):  green area=(1+2×((1/2))^2 −(1/2))e^(((1/2))^2 ) =e^(1/4)   green area < blue area < red area  ⇒e^(1/4) < ∫_0 ^1 e^x^2  dx <((1+e)/2)

x>0y=ex2y(0)=1,y(1)=ey=2xex2>0⇒↗y=2(1+2x)ex2>001ex2dx=areaunderbluecurve<areaunderredline>areaundergreenlineredarea=1+e2×1=1+e2tangentatx=p:y=[1+2p(px)]ep2y(0)=(1+2p2)ep2y(1)=(1+2p22p)ep2greenarea=y(0)+y(1)2×1=(1+2p2p)ep2withp=12:greenarea=(1+2×(12)212)e(12)2=e14greenarea<bluearea<redareae14<01ex2dx<1+e2

Commented by mnjuly1970 last updated on 01/Mar/24

thank you so much sir W

thankyousomuchsirW

Terms of Service

Privacy Policy

Contact: info@tinkutara.com