Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 204879 by universe last updated on 29/Feb/24

     lim_(n→0)  n!(e−x_n ) = ?    where x_(n ) = 1+(1/(1!))+(1/(2!))+...+(1/(n!))

limn0n!(exn)=?wherexn=1+11!+12!+...+1n!

Commented by mr W last updated on 01/Mar/24

you mean n→∞ ?

youmeann?

Commented by universe last updated on 01/Mar/24

yes sir

yessir

Answered by Frix last updated on 01/Mar/24

???  x_n =Σ_(k=0) ^n (1/(k!)) ⇒ x_0 =1  0!(e−x_0 )=1×(e−1)=e−1

???xn=nk=01k!x0=10!(ex0)=1×(e1)=e1

Answered by witcher3 last updated on 02/Mar/24

e−x_n =Σ_(k≥n+1) (1/(k!))=(1/((n+1)!))Σ_(k≥n+1) (((n+1)!)/(k!))=(1/((n+1)!))(Σ_(k≥n+1) (((n+1)!)/(k!)))  Σ_(k≥n+1) (((n+1)!)/(k!))=(1+(1/((n+2)))+(1/((n+2)(n+3)))=  Σ_(k≥n+1) (((n+1)!)/(k!))≤1+Σ_(k≥n+2) (1/((n+2)^(k−n) )) ≤1+Σ_(k≥2) (1/2^k )=(3/2)  ;k+1≥2;n≥1  e−x_n =(1/((n+1)!))Σ(((n+1)!)/(k!))≤(3/(2(n+1)!))  ⇒n!∣e−x_n ∣≤(3/(2(n+1)))  0≤lim_(n→∞)   n!∣e−x_n ∣≤lim_(n→∞)  (3/(2(n+1)))=0

exn=kn+11k!=1(n+1)!kn+1(n+1)!k!=1(n+1)!(kn+1(n+1)!k!)kn+1(n+1)!k!=(1+1(n+2)+1(n+2)(n+3)=kn+1(n+1)!k!1+kn+21(n+2)kn1+k212k=32;k+12;n1exn=1(n+1)!Σ(n+1)!k!32(n+1)!n!exn∣⩽32(n+1)0limnn!exn∣⩽limn32(n+1)=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com