All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 204970 by mr W last updated on 04/Mar/24
Commented by mr W last updated on 04/Mar/24
theverticesoftrianglePQRlieoneachofthethreetouchingcircleswithradiia,b,crespectively.findthemaximumareaofthetriangle.
Answered by mr W last updated on 02/May/24
Commented by mr W last updated on 02/May/24
Δ=abc(a+b+c)R=abc4Δ=14abca+b+csin∠A=2Rb+c=12(b+c)abca+b+csin∠B=2Rc+a=12(c+a)abca+b+csin∠C=2Ra+b=12(a+b)abca+b+ccos∠A=(c+a)2+(a+b)2−(b+c)22(c+a)(a+b)=a(a+b+c)−bc(c+a)(a+b)cos∠B=(a+b)2+(b+c)2−(c+a)22(a+b)(b+c)=b(a+b+c)−ca(a+b)(b+c)cos∠C=(b+c)2+(c+a)2−(a+b)22(b+c)(c+a)=c(a+b+c)−ab(b+c)(c+a)α+β+γ=2πaccordingtoQ206922sin(α−∠A)=sinαcos∠A−cosαsin∠Asin(α−∠A)=a(a+b+c)−bc(c+a)(a+b)×sinα−12(b+c)abca+b+c×cosα(c+a)(a+b)sin(α−∠A)=[a(a+b+c)−bc]sinα−(c+a)(a+b)2(b+c)abca+b+c×cosαcos(α−∠A)=cosαcos∠A+sinαsin∠Acos(α−∠A)=a(a+b+c)−bc(c+a)(a+b)×cosα+12(b+c)abca+b+c×sinα(c+a)(a+b)cos(α−∠A)=[a(a+b+c)−bc]cosα+(c+a)(a+b)2(b+c)abca+b+c×sinαx=(c+a)(a+b)sin(α−∠A)(c+a)2sin2γ+(a+b)2sin2β+2(c+a)(a+b)sinβsinγcos(α−∠A)⇒x=[a(a+b+c)−bc]sinα−(c+a)(a+b)2(b+c)abca+b+c×cosα(c+a)2sin2γ+(a+b)2sin2β+2sinβsinγ{[a(a+b+c)−bc]cosα+(c+a)(a+b)2(b+c)abca+b+c×sinα}y=(a+b)(b+c)sin(β−∠B)(a+b)2sin2α+(b+c)2sin2γ+2(a+b)(b+c)sinγsinacos(β−∠B)z=(b+c)(c+a)sin(γ−∠C)(b+c)2sin2β+(c+a)2sin2α+2(b+c)(c+a)sinαsinβcos(γ−∠C)p=(y+b)2+(z+c)2−2(y+b)(z+c)cosαq=(z+c)2+(x+a)2−2(z+c)(x+a)cosβr=(x+a)2+(y+b)2−2(x+a)(y+b)cosγsin∠Q2z+c=sin∠R1y+b=sinαp⇒sin∠Q2=(z+c)sinα(y+b)2+(z+c)2−2(y+b)(z+c)cosα⇒sin∠R1=(y+b)sinα(y+b)2+(z+c)2−2(y+b)(z+c)cosαsimilarlysin∠R2=(x+a)sinβ(z+c)2+(x+a)2−2(z+c)(x+a)cosβsin∠P1=(z+c)sinβ(z+c)2+(x+a)2−2(z+c)(x+a)cosβsin∠P2=(y+b)sinγ(x+a)2+(y+b)2−2(x+a)(y+b)cosγsin∠Q1=(x+a)sinγ(x+a)2+(y+b)2−2(x+a)(y+b)cosγ∠P1=∠Q2⇒(z+c)sinβ(z+c)2+(x+a)2−2(z+c)(x+a)cosβ=(z+c)sinα(y+b)2+(z+c)2−2(y+b)(z+c)cosα⇒sinαsinβ=(y+b)2+(z+c)2−2(y+b)(z+c)cosα(z+c)2+(x+a)2−2(z+c)(x+a)cosβ...(i)∠Q1=∠R2⇒(x+a)sinγ(x+a)2+(y+b)2−2(x+a)(y+b)cosγ=(x+a)sinβ(z+c)2+(x+a)2−2(z+c)(x+a)cosβ⇒sinβsinγ=(z+c)2+(x+a)2−2(z+c)(x+a)cosβ(x+a)2+(y+b)2−2(x+a)(y+b)cosγ...(ii)∠R1=∠P2⇒(y+b)sinα(y+b)2+(z+c)2−2(y+b)(z+c)cosα=(y+b)sinγ(x+a)2+(y+b)2−2(x+a)(y+b)cosγ⇒sinγsinα=(x+a)2+(y+b)2−2(x+a)(y+b)cosγ(y+b)2+(z+c)2−2(y+b)(z+c)cosα...(iii)twoofthesethreeequationscanbesolvedtogetα,βandγ.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com