All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 204991 by tigrecomplexe last updated on 04/Mar/24
Commented by tigrecomplexe last updated on 05/Mar/24
sommeonecanputhandhereplease?
Answered by witcher3 last updated on 05/Mar/24
un=limen→∞sin(2π1+n2)∑nk=1ln(1+kn)2sin(2π1+n2)=sin(2πn(1+1n2)12)(1+1n2)12=1+12n2+o(1n2)sin(2π1+n2)=n→∞sin(2πn+πn+o(1n))=sin(πn+o(1n))sin(2π1+n2)=∞πn+o(1n)un=ensin(2π1+n2).12n∑nk=1ln(1+kn)limn→∞.12.1n∑nk=1ln(1+kn)=∫01ln(1+x)2=[(1+x)2ln(1+x)−x2]01=ln(2)−12limn→∞.nsin(2π1+n2)=limn→∞n.(πn)=πUn→eπ(ln(2)−12)=2πeπ2
Answered by Mathspace last updated on 05/Mar/24
An=(∏k=1n1+kn)sin(2π1+n2)⇒log(An)=sin(2π1+n2)∑k=1nlog(1+kn)1+n2=n1+1n2=n(1+1n2)12∼n(1+12n2)=n+12n⇒sin(2π1+n2)∼sin(2πn+πn)=sin(πn)∼πn⇒log(An)∼πn∑k=1nlog1+knReimansumgivelimn→+∞log(An)=π∫01log1+xdx=π2∫01log(1+x)dxbut∫01log(1+x)dx=[xlog(1+x)]01−∫01x1+xdx=log2−∫011+x−11+xdx=log2−1+∫01dx1+x=log2−1+[log(1+x)]01=log2−1+log2=2log2−1limlog(An)=π2(2log2−1)=πlog2−π2⇒limn→+∞An=eπlog2−π2=2π×e−π2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com