Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 204991 by tigrecomplexe last updated on 04/Mar/24

Commented by tigrecomplexe last updated on 05/Mar/24

sommeone can put hand here please ?

sommeonecanputhandhereplease?

Answered by witcher3 last updated on 05/Mar/24

u_n =lim_(n→∞) e^(sin(2π(√(1+n^2 )))Σ_(k=1) ^n ((ln(1+(k/n)))/2))   sin(2π(√(1+n^2 )))=sin(2πn(1+(1/n^2 ))^(1/2) )  (1+(1/n^2 ))^(1/2) =1+(1/(2n^2 ))+o((1/n^2 ))  sin(2π(√(1+n^2 )))=^(n→∞) sin(2πn+(π/n)+o((1/n)))=sin((π/n)+o((1/n)))  sin(2π(√(1+n^2 )))=^∞ (π/n)+o((1/n))  u_n =e^(nsin(2π(√(1+n^2 ))).(1/(2n))Σ_(k=1) ^n ln(1+(k/n)))   lim_(n→∞) .(1/2).(1/n)Σ_(k=1) ^n ln(1+(k/n))=∫_0 ^1 ((ln(1+x))/2)=[(((1+x))/2)ln(1+x)−(x/2)]_0 ^1 =ln(2)−(1/2)  lim_(n→∞) .nsin(2π(√(1+n^2 )))=lim_(n→∞)  n.((π/n))=π  U_n →e^(π(ln(2)−(1/2))) =((2π)/e^(π/2) )

un=limensin(2π1+n2)nk=1ln(1+kn)2sin(2π1+n2)=sin(2πn(1+1n2)12)(1+1n2)12=1+12n2+o(1n2)sin(2π1+n2)=nsin(2πn+πn+o(1n))=sin(πn+o(1n))sin(2π1+n2)=πn+o(1n)un=ensin(2π1+n2).12nnk=1ln(1+kn)limn.12.1nnk=1ln(1+kn)=01ln(1+x)2=[(1+x)2ln(1+x)x2]01=ln(2)12limn.nsin(2π1+n2)=limnn.(πn)=πUneπ(ln(2)12)=2πeπ2

Answered by Mathspace last updated on 05/Mar/24

A_n =(Π_(k=1) ^n (√(1+(k/n))))^(sin(2π(√(1+n^2 ))))   ⇒log(A_n )=sin(2π(√(1+n^2 )))Σ_(k=1) ^n log((√(1+(k/n))))  (√(1+n^2 ))=n(√(1+(1/n^2 )))=n(1+(1/n^2 ))^(1/2)   ∼n(1+(1/(2n^2 )))=n+(1/(2n)) ⇒  sin(2π(√(1+n^2 )))∼sin(2πn+(π/n))  =sin((π/n))∼(π/n) ⇒  log(A_n )∼(π/n)Σ_(k=1) ^n log(√(1+(k/n)))  Reiman sum give  lim_(n→+∞) log(A_n )  =π∫_0 ^1 log(√(1+x))dx  =(π/2)∫_0 ^1 log(1+x)dx but  ∫_0 ^1 log(1+x)dx=  [xlog(1+x)]_0 ^1 −∫_0 ^1 (x/(1+x))dx  =log2−∫_0 ^1 ((1+x−1)/(1+x))dx  =log2−1+∫_0 ^1 (dx/(1+x))  =log2−1+[log(1+x)]_0 ^1   =log2−1+log2=2log2−1  lim log(A_n )=(π/2)(2log2−1)  =πlog2−(π/2) ⇒  lim_(n→+∞) A_n =e^(πlog2−(π/2))   =2^π ×e^(−(π/2))

An=(k=1n1+kn)sin(2π1+n2)log(An)=sin(2π1+n2)k=1nlog(1+kn)1+n2=n1+1n2=n(1+1n2)12n(1+12n2)=n+12nsin(2π1+n2)sin(2πn+πn)=sin(πn)πnlog(An)πnk=1nlog1+knReimansumgivelimn+log(An)=π01log1+xdx=π201log(1+x)dxbut01log(1+x)dx=[xlog(1+x)]0101x1+xdx=log2011+x11+xdx=log21+01dx1+x=log21+[log(1+x)]01=log21+log2=2log21limlog(An)=π2(2log21)=πlog2π2limn+An=eπlog2π2=2π×eπ2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com