Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 205032 by BaliramKumar last updated on 06/Mar/24

Commented by BaliramKumar last updated on 06/Mar/24

  please clarification

please clarification

Answered by Rasheed.Sindhi last updated on 06/Mar/24

N=qD+14 where D>14  3N=3qD+42=pD+8  4N=4qD+56=pD+8+qD+14  4qD+56=(p+q)D+22  (p+q)D−4qD=56−22=34  D(p−3q)=34  D_(>14) =((34)/(p−3q))   p−3q=1,2,17,34  D         =34,17,2^(×) ,1^(×)   ∵ D>14  ∴ D=34,17  Case 1: D=17  N=17q+14≡14(mod 17)  3N=51q+42≡8(mod 17)  4N=4×17q+56≡5  Case 2:D=34  N=34q+14≡14(mod 34)  3N=3×34q+42≡8(mod 34)  4N=4×34q+56≡22(mod 34)

N=qD+14whereD>143N=3qD+42=pD+84N=4qD+56=pD+8+qD+144qD+56=(p+q)D+22(p+q)D4qD=5622=34D(p3q)=34D>14=34p3qp3q=1,2,17,34D=34,17,2×,1×D>14D=34,17Case1:D=17N=17q+1414(mod17)3N=51q+428(mod17)4N=4×17q+565Case2:D=34N=34q+1414(mod34)3N=3×34q+428(mod34)4N=4×34q+5622(mod34)

Answered by A5T last updated on 06/Mar/24

N=Dk+14;3N=Dq+8; 4N=Dc+r  D≥15  3N=3Dk+14×3=3Dk+34+8  ⇒D∣34 and D≥15 ⇒D=34 or 17  4N=D(k+q)+22; If D=34; then r=22  But if D=17, then 4N=D(k+q+1)+5⇒r=5  ⇒r=5 or r=22

N=Dk+14;3N=Dq+8;4N=Dc+rD153N=3Dk+14×3=3Dk+34+8D34andD15D=34or174N=D(k+q)+22;IfD=34;thenr=22ButifD=17,then4N=D(k+q+1)+5r=5r=5orr=22

Commented by BaliramKumar last updated on 06/Mar/24

Q     say proper divisor

Qsayproperdivisor

Commented by A5T last updated on 06/Mar/24

The number ,D, cannot be a proper “divisor”,  otherwise it′d divide N completely without a   remainder.

Thenumber,D,cannotbeaproperdivisor,otherwiseitddivideNcompletelywithoutaremainder.

Commented by BaliramKumar last updated on 06/Mar/24

thanks

thanks

Answered by Rasheed.Sindhi last updated on 06/Mar/24

N≡14(mod D)⇒D>14  3N≡42≡8(mod D)  D∣(42−8)⇒D∣34 ∧ D>14  D=17,34  N=17q_1 +14 , 34q_1 +14  Case1:D=17  N=17q_1 +14≡14(mod 17)  4N=4×17q_1 +56≡56(mod 17)  4N≡56−3×17=5(mod 17  Case1:D=34  N=34q_2 +14≡14(mod 34)  4N=4×34q_1 +56≡56(mod 34)  4N≡56−34=22(mod 34)

N14(modD)D>143N428(modD)D(428)D34D>14D=17,34N=17q1+14,34q1+14Case1:D=17N=17q1+1414(mod17)4N=4×17q1+5656(mod17)4N563×17=5(mod17Case1:D=34N=34q2+1414(mod34)4N=4×34q1+5656(mod34)4N5634=22(mod34)

Commented by BaliramKumar last updated on 06/Mar/24

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com