Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 205054 by SANOGO last updated on 06/Mar/24

prove  (lim sup(A_n ))^c = lim inf(A_n ^c )

prove(limsup(An))c=liminf(Anc)

Commented by aleks041103 last updated on 11/Mar/24

BUT  A_n =(1−(−1)^n )((n+1)/4)  A_n : 1,0,2,0,3,0,4,...  A_n = { ((0, 2∣n)),((k, n=2k−1≡1(mod 2))) :}    obv.   limsup A_n →+∞   if c=1(for example):  (limsup A_n )^c →+∞  liminf A_n ^c  = liminf A_n  = 0  ⇒(limsup A_n )^c  ≠ liminf A_n ^c  for c=1  ⇒ the statement is obviously false.    But if A_n  is convergent(or diverges to ±∞) then  limsup A_n = liminf A_n  = lim A_n = A  Since A_n  is convergent ⇒ A_n ^c  also converges  ⇒liminf A_n ^c =lim A_n ^c =A^c     ⇒liminf A_n ^c  = A^c  = (limsup A_n )^c

BUTAn=(1(1)n)n+14An:1,0,2,0,3,0,4,...An={0,2nk,n=2k11(mod2)obv.limsupAn+ifc=1(forexample):(limsupAn)c+liminfAnc=liminfAn=0(limsupAn)climinfAncforc=1thestatementisobviouslyfalse.ButifAnisconvergent(ordivergesto±)thenlimsupAn=liminfAn=limAn=ASinceAnisconvergentAncalsoconvergesliminfAnc=limAnc=AcliminfAnc=Ac=(limsupAn)c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com