Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205073 by mr W last updated on 07/Mar/24

if a, b, c are the roots of  f(x)=x^3 −2024x^2 +2024x+2024  find (1/(1−a^2 ))+(1/(1−b^2 ))+(1/(1−c^2 ))=?

ifa,b,caretherootsoff(x)=x32024x2+2024x+2024find11a2+11b2+11c2=?

Answered by cortano12 last updated on 07/Mar/24

 = (a^2 /(1−a^2 )) +(b^2 /(1−b^2 )) +(c^2 /(1−c^2 )) + 3    = ((a^2 +b^2 −2(ab)^2 )/((1−a^2 )(1−b^2 ))) +(c^2 /(1−c^2 )) + 3    =((a^2 +b^2 +c^2 +3(abc)^2 −2((ab)^2 +(ac)^2 +(bc)^2 )/((1−a^2 )(1−b^2 )(1−c^2 )))+3

=a21a2+b21b2+c21c2+3=a2+b22(ab)2(1a2)(1b2)+c21c2+3=a2+b2+c2+3(abc)22((ab)2+(ac)2+(bc)2(1a2)(1b2)(1c2)+3

Answered by Frix last updated on 07/Mar/24

y=(1/(1−x^2 )) ⇒ x=±(√((y−1)/y))  Inserting & transforming  y^3 −((2027y^2 )/(2025))−((2021y)/(2025))−(1/(4100625))=0  ⇒ answer is ((2027)/(2025))

y=11x2x=±y1yInserting&transformingy32027y220252021y202514100625=0answeris20272025

Answered by A5T last updated on 07/Mar/24

WLOG ,let a=x+yi,b=x−yi,c=c where x,y,c∈R  ?=(1/(1−(x+yi)^2 ))+(1/(1−(x−yi)^2 ))+(1/(1−c^2 ))  ⇒2?=(1/(1−x−yi))+(1/(1−x+yi))+(1/(1−c))+(1/(1+x+yi))+(1/(1+x−yi))+(1/(1+c))  =((2(1−x))/((1−x)^2 +y^2 ))+(1/(1−c))+((2(1+x))/((1+x)^2 +y^2 ))+(1/(1+c))  =((2(1−c−x+xc)+1+x^2 −2x+y^2 )/(1+x^2 −2x+y^2 −c−cx^2 +2cx−cy^2 ))+((2(1+x+c+cx)+1+x^2 +2x+y^2 )/(1+x^2 +2x+y^2 +c+cx^2 +2cx+cy^2 ))  =((3−2(c+2x)+x^2 +y^2 +2cx)/(1+x^2 +y^2 +2cx−(2x+c)−c(x^2 +y^2 )))+((3+x^2 +y^2 +2cx+2(2x+c))/(1+x^2 +y^2 +2cx+2x+c+c(x^2 +y^2 )))  =((3−(2024))/(2025))+((3×2025)/(2025))=((4054)/(2025))=2?  ⇒?=((2027)/(2025))  [ab+bc+ca=2024⇒x^2 +y^2 +2cx=2024  abc=(x^2 +y^2 )c=−2024;a+b+c=2x+c=2024]

WLOG,leta=x+yi,b=xyi,c=cwherex,y,cR?=11(x+yi)2+11(xyi)2+11c22?=11xyi+11x+yi+11c+11+x+yi+11+xyi+11+c=2(1x)(1x)2+y2+11c+2(1+x)(1+x)2+y2+11+c=2(1cx+xc)+1+x22x+y21+x22x+y2ccx2+2cxcy2+2(1+x+c+cx)+1+x2+2x+y21+x2+2x+y2+c+cx2+2cx+cy2=32(c+2x)+x2+y2+2cx1+x2+y2+2cx(2x+c)c(x2+y2)+3+x2+y2+2cx+2(2x+c)1+x2+y2+2cx+2x+c+c(x2+y2)=3(2024)2025+3×20252025=40542025=2??=20272025[ab+bc+ca=2024x2+y2+2cx=2024abc=(x2+y2)c=2024;a+b+c=2x+c=2024]

Answered by A5T last updated on 07/Mar/24

(1/(1−a))+(1/(1−b))+(1/(1−c))+(1/(1+a))+(1/(1+b))+(1/(1+c))=2?  ((Σ(1−a)(1−b))/((1−a)(1−b)(1−c)))+((Σ(1+a)(1+b))/((1+a)(1+b)(1+c)))  =((3−2(a+b+c)+ab+bc+ca)/(1−a−b−c+ab+ac+bc−abc))+((3+2(Σa)+Σab)/(1+Σa+Σab+abc))  =((3−2(2024)+2024)/(1−2024+2024+2024))+((3+2(2024)+2024)/(1+2024+2024−2024))  =((3−2024)/(2025))+((3×2025)/(2025))=((4054)/(2025))=2?⇒?=((2027)/(2025))

11a+11b+11c+11+a+11+b+11+c=2?Σ(1a)(1b)(1a)(1b)(1c)+Σ(1+a)(1+b)(1+a)(1+b)(1+c)=32(a+b+c)+ab+bc+ca1abc+ab+ac+bcabc+3+2(Σa)+Σab1+Σa+Σab+abc=32(2024)+202412024+2024+2024+3+2(2024)+20241+2024+20242024=320242025+3×20252025=40542025=2??=20272025

Answered by mr W last updated on 07/Mar/24

(x−1+1)^3 −2024(x−1+1)^2 +2024(x−1+1)+2024=0  let t=x−1  (t+1)^3 −2024(t+1)^2 +2024(t+1)+2024=0  ((2025)/t^3 )−((2021)/t^2 )−((2021)/t)+1=0  ⇒Σ(1/(1−x))=−Σ(1/t)=−((2021)/(2025))  (x+1−1)^3 −2024(x+1−1)^2 +2024(x+1−1)+2024=0  let s=x+1  (s−1)^3 −2024(s−1)^2 +2024(s−1)+2024=0  s^3 −2027s^2 +6075s−2025=0  ((2025)/s^3 )−((6075)/s^2 )+((2027)/s)−1=0  ⇒Σ(1/(1+x))=Σ(1/s)=((6075)/(2025))  (1/(1−a^2 ))+(1/(1−b^2 ))+(1/(1−c^2 ))  =(1/2)((1/(1−a))+(1/(1−b))+(1/(1−c))+(1/(1+a))+(1/(1+b))+(1/(1+c)))  =(1/2)(Σ(1/(1−x))+Σ(1/(1+x)))  =(1/2)(−((2021)/(2025))+((6075)/(2025)))=((2027)/(2025)) ✓

(x1+1)32024(x1+1)2+2024(x1+1)+2024=0lett=x1(t+1)32024(t+1)2+2024(t+1)+2024=02025t32021t22021t+1=0Σ11x=Σ1t=20212025(x+11)32024(x+11)2+2024(x+11)+2024=0lets=x+1(s1)32024(s1)2+2024(s1)+2024=0s32027s2+6075s2025=02025s36075s2+2027s1=0Σ11+x=Σ1s=6075202511a2+11b2+11c2=12(11a+11b+11c+11+a+11+b+11+c)=12(Σ11x+Σ11+x)=12(20212025+60752025)=20272025

Answered by pi314 last updated on 08/Mar/24

((P′(x))/(P(x)))=Σ_(a,b,c) (1/(x−c));((3x^2 −4048x+2024)/(x^3 −2024x^2 +2024x+2024))  S=(1/2)((1/(1−a))+(1/(1−b))+(1/(1−c)))+(1/2)((1/(1+a))+(1/(1+b))+(1/(1+c)))  S=(1/2)(((P′(1))/(P(1)))−((P′(−1))/(P(−1))))=(1/2)(((−2021)/(2025))+((6075)/(2025)))=((2027)/(2025))

P(x)P(x)=a,b,c1xc;3x24048x+2024x32024x2+2024x+2024S=12(11a+11b+11c)+12(11+a+11+b+11+c)S=12(P(1)P(1)P(1)P(1))=12(20212025+60752025)=20272025

Terms of Service

Privacy Policy

Contact: info@tinkutara.com