Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 205134 by universe last updated on 09/Mar/24

Answered by pi314 last updated on 09/Mar/24

nx=y  ⇔A=lim_(n→∞) ∫_0 ^n ((f((y/n)))/((1+y^2 )))dy=lim_(n→∞) ∫_0 ^n (M/(1+x^2 ));M=sup f_([0,1])   M exist since f is continus over Compact  A=lim_(n→∞) ∫_0 ^n ((f((y/n)))/(1+y^2 ))dy≤∫_0 ^∞ (M/(1+x^2 ))=(π/2)M  we have uniforme Cv ⇒A=∫_0 ^∞ lim_(n→∞) ((f((y/n)))/(1+y^2 ))dy  =∫_0 ^∞ ((f(lim_(n→∞) (y/n)))/(1+y^2 ))dy=∫_0 ^∞ ((f(0))/(1+x^2 ))dx=(π/2)f(0)

nx=yA=limn0nf(yn)(1+y2)dy=limn0nM1+x2;M=supf[0,1]MexistsincefiscontinusoverCompactA=limn0nf(yn)1+y2dy0M1+x2=π2MwehaveuniformeCvA=0limnf(yn)1+y2dy=0f(limnyn)1+y2dy=0f(0)1+x2dx=π2f(0)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com