Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205147 by Ghisom last updated on 10/Mar/24

solve for z∈C  zln z =z−2

solveforzCzlnz=z2

Answered by pi314 last updated on 10/Mar/24

z=e^y   ⇔ye^y =e^y −2  (y−1)e^(y−1) =−2e^(−1)   y−1=W(−2e^(−1) )  y=1+W(−2e^(−1) )  z=e^(1+W(−2e^(−1) ))

z=eyyey=ey2(y1)ey1=2e1y1=W(2e1)y=1+W(2e1)z=e1+W(2e1)

Commented by Frix last updated on 10/Mar/24

What′s the approximate value of z?

Whatstheapproximatevalueofz?

Answered by Frix last updated on 10/Mar/24

Different method:  zln z −z+2=0  z(ln z −1)+2=0  z=re^(iθ)   re^(iθ) (ln r −1+iθ)+2=0   { ((r(cos θ ln r −cos θ −θsin θ)+2=0)),((ir(sin θ ln r +θcos θ −sin θ)=0)) :}  (2) ⇒ r=e^(1−(θ/(tan θ)))   (1) 2−e^(1−(θ/(tan θ))) (θ/(sin θ))=0  θ≈±1.13267249760  r≈1.59896034818  z≈.678344933205±1.44793727304i

Differentmethod:zlnzz+2=0z(lnz1)+2=0z=reiθreiθ(lnr1+iθ)+2=0{r(cosθlnrcosθθsinθ)+2=0ir(sinθlnr+θcosθsinθ)=0(2)r=e1θtanθ(1)2e1θtanθθsinθ=0θ±1.13267249760r1.59896034818z.678344933205±1.44793727304i

Terms of Service

Privacy Policy

Contact: info@tinkutara.com