Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 205151 by mathzup last updated on 10/Mar/24

find  ∫_0 ^∞   ((ln^2 x)/(1+x^4 ))dx

find0ln2x1+x4dx

Answered by Berbere last updated on 12/Mar/24

Ω=∫_(−∞) ^0 ((ln^2 (x))/(1+x^4 ))dx+∫_0 ^∞ ((ln^2 (x))/(1+x^4 ))dx=∫_0 ^∞ ((ln^2 (x)+(ln(x)+iπ)^2 )/(1+x^4 ))  =2∫_0 ^∞ ((ln^2 (x))/(1+x^4 ))dx−π^2 ∫_0 ^∞ (dx/(1+x^4 ))+2iπ∫_0 ^∞ ((ln(x))/(1+x^4 ))  ∫_0 ^∞ ((ln^2 (x))/(1+x^4 ))=(1/2)(Re(Ω)+π^2 ∫_0 ^∞ (dx/(1+x^4 )))  ∫_0 ^∞ (dx/(1+x^4 ))=∫_0 ^∞ (y^(−(3/4)) /(4(1+y)))=(1/4)β((1/4),(3/4))=(π/(4sin((π/4))))=(π/(2(√2)))  C={z∈C∣Re(z)>0}  ∫_C ((ln^2 (z))/(1+z^4 ))dx=2iπRes(f,e^(i(π/4)) ,e^(3i(π/4)) )=Ω  =2iπ.((((((iπ)/4))^2 )/(4e^(3((iπ)/4)) ))+(((((3iπ)/4))^2 )/(4e^(9i(π/4)) )))=i(π/2)((π^2 /(16))e^(i(π/4)) −((9π^2 )/(16))e^(−((iπ)/4)) )  =(π^3 /(32))(−4i(√2)−5(√2));∫_0 ^∞ ((ln^2 (x))/(1+x^4 ))=−((5(√2))/(64))π^3 +(π^3 /(4(√2)))  =((3(√2))/(64))π^3

Ω=0ln2(x)1+x4dx+0ln2(x)1+x4dx=0ln2(x)+(ln(x)+iπ)21+x4=20ln2(x)1+x4dxπ20dx1+x4+2iπ0ln(x)1+x40ln2(x)1+x4=12(Re(Ω)+π20dx1+x4)0dx1+x4=0y344(1+y)=14β(14,34)=π4sin(π4)=π22C={zCRe(z)>0}Cln2(z)1+z4dx=2iπRes(f,eiπ4,e3iπ4)=Ω=2iπ.((iπ4)24e3iπ4+(3iπ4)24e9iπ4)=iπ2(π216eiπ49π216eiπ4)=π332(4i252);0ln2(x)1+x4=5264π3+π342=3264π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com