All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 205151 by mathzup last updated on 10/Mar/24
find∫0∞ln2x1+x4dx
Answered by Berbere last updated on 12/Mar/24
Ω=∫−∞0ln2(x)1+x4dx+∫0∞ln2(x)1+x4dx=∫0∞ln2(x)+(ln(x)+iπ)21+x4=2∫0∞ln2(x)1+x4dx−π2∫0∞dx1+x4+2iπ∫0∞ln(x)1+x4∫0∞ln2(x)1+x4=12(Re(Ω)+π2∫0∞dx1+x4)∫0∞dx1+x4=∫0∞y−344(1+y)=14β(14,34)=π4sin(π4)=π22C={z∈C∣Re(z)>0}∫Cln2(z)1+z4dx=2iπRes(f,eiπ4,e3iπ4)=Ω=2iπ.((iπ4)24e3iπ4+(3iπ4)24e9iπ4)=iπ2(π216eiπ4−9π216e−iπ4)=π332(−4i2−52);∫0∞ln2(x)1+x4=−5264π3+π342=3264π3
Terms of Service
Privacy Policy
Contact: info@tinkutara.com