Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 205156 by depressiveshrek last updated on 11/Mar/24

Find the determinant:   determinant ((5,3,0,0,…,0,0),(2,5,3,0,…,0,0),(0,2,5,3,…,0,0),(⋮,⋮,⋮,⋮,⋱,⋮,⋮),(0,0,0,0,…,5,3),(0,0,0,0,…,2,5))

Findthedeterminant:|530000253000025300000053000025|

Answered by pi314 last updated on 11/Mar/24

Δ_n = determinant (((5 3   0 0......0 0)),((2  5  3 0......0 0)),((0  2  5 3......0  0)),((..................5 3)),((0 0 0  0....... 2 5)))  Δ_n = 5.Δ_(n−1) −2.3Δ_(n−2)   Δ_n =5Δ_(n−1) −6Δ_(n−2)   Δ_2 = determinant (((5    3)),((2    5)))=19  Δ_1 =5  Δ_3 = determinant (((5  3  0)),((2  5  3)),((0  2  5)),())=5∣19∣−30=65  X^2 −5X+6=0⇒(X−3)(X−2)=0;X∈{2,3}  Δ_n =a(2)^n +b(3^n )  4a+9b=19;2a+3b=5  3b+10=19⇒b=3;a=−2  Δ_n =−2^(n+1) +3^(n+1) ;Δ_3 =−(2)^4 +(3)^4 =81−16=65  Δ_4 = determinant (((5   3  0    0)),((2   5  3    0)),((0   2  5    3)),((0   0 2     5)))=5.65−6.19=211=−(2)^5 +3^5 ..True  Δ_n =−(2)^(n+1) +(3)^(n+1)

Δn=|5300......002530......000253......00..................530000.......25|Δn=5.Δn12.3Δn2Δn=5Δn16Δn2Δ2=|5325|=19Δ1=5Δ3=|530253025|=51930=65X25X+6=0(X3)(X2)=0;X{2,3}Δn=a(2)n+b(3n)4a+9b=19;2a+3b=53b+10=19b=3;a=2Δn=2n+1+3n+1;Δ3=(2)4+(3)4=8116=65Δ4=|5300253002530025|=5.656.19=211=(2)5+35..TrueΔn=(2)n+1+(3)n+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com