Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 205161 by York12 last updated on 11/Mar/24

Calculate the area of the green shaded portions

Calculatetheareaofthegreenshadedportions

Commented by York12 last updated on 11/Mar/24

Answered by mr W last updated on 12/Mar/24

Commented by mr W last updated on 13/Mar/24

(−(1/a)+(1/b)+(1/r_n )+(1/r_(n+1) ))^2 =2((1/a^2 )+(1/b^2 )+(1/r_n ^2 )+(1/r_(n+1) ^2 ))  (−(1/a)+(1/b))^2 +(1/r_n ^2 )+(1/r_(n+1) ^2 )+2(−(1/a)+(1/b))((1/r_n )+(1/r_(n+) ))+(2/(r_n r_(n+1) ))=2((1/a^2 )+(1/b^2 )+(1/r_n ^2 )+(1/r_(n+1) ^2 ))  (1/r_(n+1) ^2 )−2((1/b)−(1/a)+(1/r_n ))(1/r_(n+1) )+(1/r_(n+1) ^2 )−2((1/b)−(1/a))(1/r_n )+((1/b)−(1/a))^2 +(4/(ab))=0  (1/r_(n+1) ^2 )−2((1/r_n )+(1/b)−(1/a))(1/r_(n+1) )+((1/r_n )−(1/b)+(1/a))^2 +(4/(ab))=0  ⇒(1/r_(n+1) )=(1/r_n )+(1/b)−(1/a)+2(√((1/r_n )((1/b)−(1/a))−(1/(ab))))  ⇒(1/r_(n−1) )=(1/r_n )+(1/b)−(1/a)−2(√((1/r_n )((1/b)−(1/a))−(1/(ab))))  ⇒(1/r_(n+1) )+(1/r_(n−1) )=2((1/r_n )+(1/b)−(1/a))  say k_n =(1/r_n ), α=(1/a), β=(1/b)  ⇒k_(n+1) −2k_n +k_(n−1) +2(α−β)=0  k_n =A+Bn+(β−α)n^2   in current example:  a=2, b=1, r_0 =a−b=1  k_0 =A=(1/r_0 )=(1/(a−b))  k_1 =A+B+(β−α)  k_(−1) =A−B+(β−α)=k_1   ⇒B=0  ⇒k_n =(1/(a−b))+((1/b)−(1/a))n^2 =(((a−b)/(ab)))[((ab)/((a−b)^2 ))+n^2 ]  r_n =((ab)/((a−b)[((ab)/((a−b)^2 ))+n^2 ]))=((ab)/((a−b)(λ^2 +n^2 )))  with λ=((√(ab))/(a−b))  S=πr_0 ^2 +2πΣ_(n=1) ^∞ r_n ^2   S=π(a−b)^2 +((2a^2 b^2 π)/((a−b)^2 ))Σ_(n=1) ^∞ (1/((λ^2 +n^2 )^2 ))  we have (see Q205173)  Σ_(n=1) ^∞ (1/((λ^2 +n^2 )^2 ))=(π^2 /(4λ^2  sinh^2  (λπ)))+(π/(4λ^3  tanh (λπ)))−(1/(2λ^4 ))  S=π(a−b)^2 +((2a^2 b^2 π)/((a−b)^2 ))[(π^2 /(4λ^2  sinh^2  (λπ)))+(π/(4λ^3  tanh (λπ)))−(1/(2λ^4 ))]  ⇒S=(((a−b)(√(ab))π^2 )/2)[((λπ)/(sinh^2  (λπ)))+(1/(tanh (λπ)))]  with a=2, b=1, λ=(√2)  S=(π^2 /( (√2)))[(((√2)π)/(sinh^2  ((√2)π)))+(1/(tanh ((√2)π)))]     =((π^2 (e^((√2)π) +e^(−(√2)π) ))/( (√2)(e^((√2)π) −e^(−(√2)π) )))+((4π^3 )/(e^(2(√2)π) +e^(−2(√2)π) −2))     ≈6.997 958 338

(1a+1b+1rn+1rn+1)2=2(1a2+1b2+1rn2+1rn+12)(1a+1b)2+1rn2+1rn+12+2(1a+1b)(1rn+1rn+)+2rnrn+1=2(1a2+1b2+1rn2+1rn+12)1rn+122(1b1a+1rn)1rn+1+1rn+122(1b1a)1rn+(1b1a)2+4ab=01rn+122(1rn+1b1a)1rn+1+(1rn1b+1a)2+4ab=01rn+1=1rn+1b1a+21rn(1b1a)1ab1rn1=1rn+1b1a21rn(1b1a)1ab1rn+1+1rn1=2(1rn+1b1a)saykn=1rn,α=1a,β=1bkn+12kn+kn1+2(αβ)=0kn=A+Bn+(βα)n2incurrentexample:a=2,b=1,r0=ab=1k0=A=1r0=1abk1=A+B+(βα)k1=AB+(βα)=k1B=0kn=1ab+(1b1a)n2=(abab)[ab(ab)2+n2]rn=ab(ab)[ab(ab)2+n2]=ab(ab)(λ2+n2)withλ=ababS=πr02+2πn=1rn2S=π(ab)2+2a2b2π(ab)2n=11(λ2+n2)2wehave(seeQ205173)n=11(λ2+n2)2=π24λ2sinh2(λπ)+π4λ3tanh(λπ)12λ4S=π(ab)2+2a2b2π(ab)2[π24λ2sinh2(λπ)+π4λ3tanh(λπ)12λ4]S=(ab)abπ22[λπsinh2(λπ)+1tanh(λπ)]witha=2,b=1,λ=2S=π22[2πsinh2(2π)+1tanh(2π)]=π2(e2π+e2π)2(e2πe2π)+4π3e22π+e22π26.997958338

Commented by mr W last updated on 12/Mar/24

Commented by York12 last updated on 12/Mar/24

thank you

thankyou

Commented by York12 last updated on 12/Mar/24

very good solution

verygoodsolution

Terms of Service

Privacy Policy

Contact: info@tinkutara.com