All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 205163 by Lindemann last updated on 11/Mar/24
∫01sin(lnx)lnxdx
Answered by mathzup last updated on 11/Mar/24
I=∫01sin(lnx)lnxdxchangementx=e−tgiveI=−∫0∞−sint−t(−e−t)dt=∫0∞e−ttsintdtletf(a)=∫0∞e−attsintdt(a>0)f′(a)=−∫0∞e−atsintdt=−Im(∫0∞e−at+itdt)but∫0∞e(−a+i)tdt=[1−a+ie(−a+i)t]0∞=−1−a+i=1a−i=a+ia2+1⇒f′(a)=−1a2+1⇒f(a)=c−arctanalafonctionestprolongeableparcontinuiteen0⇒∃m>0∣e−atsintt∣⩽me−at⇒∣f(a)∣⩽m∫0∞e−atdt=ma→0(a→+∞)0=c−π2⇒c=π2⇒f(a)=π2−arctan(a)∫0∞e−ttsintdt=f(1)=π2−arctan(1)=π2−π4=π4so∫01sin(lnx)lnxdx=π4
Terms of Service
Privacy Policy
Contact: info@tinkutara.com