Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205174 by universe last updated on 12/Mar/24

lim_(x→∞)  {x^(1/x) } = ? where {.} is a fractional part of x

limx{x1/x}=?where{.}isafractionalpartofx

Answered by lepuissantcedricjunior last updated on 12/Mar/24

lim_(x→+∞) (x)^(1/x) =∞^0 =FI  lim_(x→+∞) (x)^(1/x) =lim_(x→+∞) e^((lnx)/x) =e^0 =1  car lim_(x→+∞) ((lnx)/x)=0  formule usuelle  .........le puissant Dr............

limx+(x)1x=0=FIlimx+(x)1x=limx+elnxx=e0=1carlimx+lnxx=0formuleusuelle.........lepuissantDr............

Answered by Berbere last updated on 13/Mar/24

=x^(1/x) −[x^(1/x) ]  x→^f x^(1/x) ;  f(x)=e^((1/x)ln(x)) ;lim_(x→∞) f(x)=1  x>1⇒f(x)≥1 ⇒∃A∈R,∀x≥A⇒1≤f(x)≤(3/2)  ⇒∀x≥A  [e^((ln(x))/x) ]=1  ⇒x^(1/x) −[x^(1/x) ]=x^(1/x) −1;∀x≥A  lim_(x→∞)  x^(1/x) −1=0

=x1x[x1x]xfx1x;f(x)=e1xln(x);limxf(x)=1x>1f(x)1AR,xA1f(x)32xA[eln(x)x]=1x1x[x1x]=x1x1;xAlimxx1x1=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com