Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 205279 by gopikrishnan last updated on 14/Mar/24

∫^(π/2) _(-π/2) ((8(√2)cosx)/((1+e^(sinx) )(1+sin^4 x)))dx=aπ+blog(3+2(√2)) then find a+b

π/2π/282cosx(1+esinx)(1+sinx4)dx=aπ+blog(3+22)thenfinda+b

Answered by Berbere last updated on 14/Mar/24

x→−x  Ω=∫_(−(π/2)) ^(π/2) ((8(√2)cos(x))/((1+e^(sin(x)) )(1+sin^4 (x))))dx=∫_(π/2) ^(−(π/2)) −((8(√2)cos(−x))/((1+e^(−sin(x)) )(1+sin^4 (x))))dx  =Ω  2Ω=∫_(−(π/2)) ^(π/2) ((8(√2)cos(x))/(1+sin^4 (x)));sin(x)=y  2Ω=∫_(−1) ^1 ((8(√2)dy)/(1+y^4 ))⇒Ω=∫_0 ^1 ((8(√2)dy)/((y^2 +1+y(√2))(y^2 +1−y(√2))))  ((8(√2))/((y^4 +1)))=((ay+b)/(y^2 +1+y(√2)))+((cy+d)/(y^2 +1−y(√2)))  a+c=0,(−a(√2)+b+c(√2)+d)=0  b+d=8(√2);(a+c+d(√2)−b(√2))=0  a−c=8  d−b=0  d=b=4(√2);a=4,c=−4  ((4y+4(√2))/(y^2 +y(√2)+1))+((−4y+4(√2))/(y^2 +1−y(√2)))  ((2(2y+(√2)))/(y^2 +y(√2)+1))+((2(√2))/((y+(1/( (√2))))^2 +(1/2)))+((−2(2y−(√2)))/(y^2 +1−y(√2)))+((2(√2))/((y−(1/2))^2 +(1/2)))  ∫((8(√2))/(y^4 +1))dy=2ln(((y^2 +y(√2)+1)/(y^2 −y(√2)+1)))+4tan^(−1) (y(√2)+1)+4tan^(−1) (y(√2)−1)+c  Ω=2ln(((2+(√2))/(2−(√2))))+4(tan^(−1) ((√2)+1)+tan^(−1) ((√2)−1)−tan^(−1) (1)−tan^(−1) (−1))  =2ln(((6+4(√2))/2))+4(tan^(−1) ((√2)+1)+tan^(−1) ((1/( (√2)+1))))  2ln(3+2(√2))+4.(π/2)=2π+2ln(3+2(√(2)))

xxΩ=π2π282cos(x)(1+esin(x))(1+sin4(x))dx=π2π282cos(x)(1+esin(x))(1+sin4(x))dx=Ω2Ω=π2π282cos(x)1+sin4(x);sin(x)=y2Ω=1182dy1+y4Ω=0182dy(y2+1+y2)(y2+1y2)82(y4+1)=ay+by2+1+y2+cy+dy2+1y2a+c=0,(a2+b+c2+d)=0b+d=82;(a+c+d2b2)=0ac=8db=0d=b=42;a=4,c=44y+42y2+y2+1+4y+42y2+1y22(2y+2)y2+y2+1+22(y+12)2+12+2(2y2)y2+1y2+22(y12)2+1282y4+1dy=2ln(y2+y2+1y2y2+1)+4tan1(y2+1)+4tan1(y21)+cΩ=2ln(2+222)+4(tan1(2+1)+tan1(21)tan1(1)tan1(1))=2ln(6+422)+4(tan1(2+1)+tan1(12+1))2ln(3+22)+4.π2=2π+2ln(3+22)

Commented by gopikrishnan last updated on 16/Mar/24

thank u

thanku

Terms of Service

Privacy Policy

Contact: info@tinkutara.com