All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 205279 by gopikrishnan last updated on 14/Mar/24
∫−π/2π/282cosx(1+esinx)(1+sinx4)dx=aπ+blog(3+22)thenfinda+b
Answered by Berbere last updated on 14/Mar/24
x→−xΩ=∫−π2π282cos(x)(1+esin(x))(1+sin4(x))dx=∫π2−π2−82cos(−x)(1+e−sin(x))(1+sin4(x))dx=Ω2Ω=∫−π2π282cos(x)1+sin4(x);sin(x)=y2Ω=∫−1182dy1+y4⇒Ω=∫0182dy(y2+1+y2)(y2+1−y2)82(y4+1)=ay+by2+1+y2+cy+dy2+1−y2a+c=0,(−a2+b+c2+d)=0b+d=82;(a+c+d2−b2)=0a−c=8d−b=0d=b=42;a=4,c=−44y+42y2+y2+1+−4y+42y2+1−y22(2y+2)y2+y2+1+22(y+12)2+12+−2(2y−2)y2+1−y2+22(y−12)2+12∫82y4+1dy=2ln(y2+y2+1y2−y2+1)+4tan−1(y2+1)+4tan−1(y2−1)+cΩ=2ln(2+22−2)+4(tan−1(2+1)+tan−1(2−1)−tan−1(1)−tan−1(−1))=2ln(6+422)+4(tan−1(2+1)+tan−1(12+1))2ln(3+22)+4.π2=2π+2ln(3+22)
Commented by gopikrishnan last updated on 16/Mar/24
thanku
Terms of Service
Privacy Policy
Contact: info@tinkutara.com