All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 205338 by cortano12 last updated on 17/Mar/24
Answered by mr W last updated on 17/Mar/24
x⩾−2,y⩾−3x+2−4x+2+4+y+3−4y+3+4=13(x+2−2)2+(y+3−2)2=(13)2x+2−2=13cosθy+3−2=13sinθ⇒x=(2+13cosθ)2−2=2+413cosθ+13cos2θ⇒y=(2+13sinθ)2−3=1+413sinθ+13sin2θx+y=16+413(cosθ+sinθ)x+y=16+426sin(θ+π4)⇒(x+y)max=16+426✓atx=−2:(y+3−2)2=13−(−2)2=9y+3−2=3y=22⇒x+y=−2+22=20aty=−3:(x+2−2)2=13−(−2)2=9x+2−2=3x=23⇒x+y=23−3=20⇒(x+y)min=20✓
Answered by A5T last updated on 17/Mar/24
Anothermethodtoget(x+y)max:a+b2⩾(a+b2)2⇒x+2+y+32⩾(x+2+y+32)2⇒(x+y8)2⩽x+y+52;x+y=p⇒p232⩽p+5⇒p2−32p−160⩽0⇒16−426⩽x+y⩽426+16Equalitywhenx+2=y+3⇒x=1+y⇒1+2y=+8y+3⇒y=226+152⇒x=226+172⇒(x,y)=(226+172,226+152)atx+y=426+16
Terms of Service
Privacy Policy
Contact: info@tinkutara.com