Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 205338 by cortano12 last updated on 17/Mar/24

Answered by mr W last updated on 17/Mar/24

x≥−2, y≥−3  x+2−4(√(x+2))+4+y+3−4(√(y+3))+4=13  ((√(x+2))−2)^2 +((√(y+3))−2)^2 =((√(13)))^2   (√(x+2))−2=(√(13)) cos θ  (√(y+3))−2=(√(13)) sin θ  ⇒x=(2+(√(13)) cos θ)^2 −2=2+4(√(13)) cos θ+13 cos^2  θ  ⇒y=(2+(√(13)) sin θ)^2 −3=1+4(√(13)) sin θ+13 sin^2  θ  x+y=16+4(√(13))(cos θ+sin θ)  x+y=16+4(√(26)) sin (θ+(π/4))  ⇒(x+y)_(max) =16+4(√(26)) ✓  at x=−2:   ((√(y+3))−2)^2 =13−(−2)^2 =9  (√(y+3))−2=3  y=22  ⇒x+y=−2+22=20  at y=−3:  ((√(x+2))−2)^2 =13−(−2)^2 =9  (√(x+2))−2=3  x=23  ⇒x+y=23−3=20  ⇒(x+y)_(min) =20 ✓

x2,y3x+24x+2+4+y+34y+3+4=13(x+22)2+(y+32)2=(13)2x+22=13cosθy+32=13sinθx=(2+13cosθ)22=2+413cosθ+13cos2θy=(2+13sinθ)23=1+413sinθ+13sin2θx+y=16+413(cosθ+sinθ)x+y=16+426sin(θ+π4)(x+y)max=16+426atx=2:(y+32)2=13(2)2=9y+32=3y=22x+y=2+22=20aty=3:(x+22)2=13(2)2=9x+22=3x=23x+y=233=20(x+y)min=20

Answered by A5T last updated on 17/Mar/24

Another method to get (x+y)_(max) :  ((a+b)/2)≥((((√a)+(√b))/2))^2 ⇒((x+2+y+3)/2)≥((((√(x+2))+(√(y+3)))/2))^2   ⇒(((x+y)/8))^2 ≤((x+y+5)/2); x+y=p⇒(p^2 /(32))≤p+5  ⇒p^2 −32p−160≤0⇒16−4(√(26))≤x+y≤4(√(26))+16  Equality when x+2=y+3⇒ x=1+y  ⇒1+2y=+8(√(y+3)) ⇒y=2(√(26))+((15)/2)⇒x=2(√(26))+((17)/2)  ⇒(x,y)=(2(√(26))+((17)/2),2(√(26))+((15)/2)) at x+y=4(√(26))+16

Anothermethodtoget(x+y)max:a+b2(a+b2)2x+2+y+32(x+2+y+32)2(x+y8)2x+y+52;x+y=pp232p+5p232p160016426x+y426+16Equalitywhenx+2=y+3x=1+y1+2y=+8y+3y=226+152x=226+172(x,y)=(226+172,226+152)atx+y=426+16

Terms of Service

Privacy Policy

Contact: info@tinkutara.com