Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 205379 by cortano12 last updated on 19/Mar/24

Answered by MM42 last updated on 19/Mar/24

hop→=lim_(x→0) ((−cosx×sin(sinx)+sinx)/(4x^3 ))  hop→=((sinx×sin(sinx)−cos^2 x×cos(sinx)+cosx)/(12x^2 ))  =lim_(x→0)  ((cosx(1−cosx))/(12x^2 ))  =lim_(x→0)  (((1/2)x^2 )/(12))=(1/(24))  ✓

hop→=limx0cosx×sin(sinx)+sinx4x3hop→=sinx×sin(sinx)cos2x×cos(sinx)+cosx12x2=limx0cosx(1cosx)12x2=limx012x212=124

Commented by Frix last updated on 20/Mar/24

I get (1/6)

Iget16

Answered by namphamduc last updated on 22/Mar/24

  L=lim_(x→0) ((cos(sin(x))−cos(x))/x^4 )=−2lim_(x→0) ((sin(((sin(x)+x)/2))sin(((sin(x)−x)/2)))/x^4 )  =−2lim_(x→0) ((sin(((sin(x)+x)/2)))/((sin(x)+x)/2))∙((sin(((sin(x)−x)/2)))/((sin(x)−x)/2)).((sin(x)+x)/(2x)).((sin(x)−x)/(2x^3 ))  lim_(x→0) ((sin(x)−x)/x^3 )=−(1/6) is well−known  ⇒L=−2.1.1.((1+1)/2)(−(1/6))(1/2)=(1/6)

L=limx0cos(sin(x))cos(x)x4=2limx0sin(sin(x)+x2)sin(sin(x)x2)x4=2limx0sin(sin(x)+x2)sin(x)+x2sin(sin(x)x2)sin(x)x2.sin(x)+x2x.sin(x)x2x3limx0sin(x)xx3=16iswellknownL=2.1.1.1+12(16)12=16

Terms of Service

Privacy Policy

Contact: info@tinkutara.com