Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 2054 by Yozzi last updated on 01/Nov/15

Find all real solutions y to the equation      sin((dy/dx))+sin((d^2 y/dx^2 ))=0 .  For each solution determine the value of  Q=max(Σ_(r=1) ^n sin((d^r y/dx^r ))), giving the value(s)  of x for which Q arises.

$${Find}\:{all}\:{real}\:{solutions}\:{y}\:{to}\:{the}\:{equation} \\ $$$$\:\:\:\:{sin}\left(\frac{{dy}}{{dx}}\right)+{sin}\left(\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\right)=\mathrm{0}\:. \\ $$$${For}\:{each}\:{solution}\:{determine}\:{the}\:{value}\:{of} \\ $$$${Q}={max}\left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{sin}\left(\frac{{d}^{{r}} {y}}{{dx}^{{r}} }\right)\right),\:{giving}\:{the}\:{value}\left({s}\right) \\ $$$${of}\:{x}\:{for}\:{which}\:{Q}\:{arises}. \\ $$

Commented by 123456 last updated on 01/Nov/15

y=k

$${y}={k} \\ $$

Commented by 123456 last updated on 01/Nov/15

∣(dy/dx)∣≪1,∣(d^2 y/dx^2 )∣≪1,∣θ∣≪1⇒sin θ≈θ  (dy/dx)+(d^2 y/dx^2 )=0  λ+λ^2 =λ(1+λ)=0  y=C_1 +C_2 e^(−x)   −−−−−−−−−−−  y=C_1 +C_2 e^(−x)   (dy/dx)=−C_2 e^(−x)   (d^2 y/dx^2 )=C_2 e^(−x)   sin (dy/dx)+sin (d^2 y/dx^2 )=0  −sin C_2 e^(−x) +sin C_2 e^(−x) =0 (T)  so  y=C_1 +C_2 e^(−x)   is a solution, but not sure if its the  full solution.

$$\mid\frac{{dy}}{{dx}}\mid\ll\mathrm{1},\mid\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\mid\ll\mathrm{1},\mid\theta\mid\ll\mathrm{1}\Rightarrow\mathrm{sin}\:\theta\approx\theta \\ $$$$\frac{{dy}}{{dx}}+\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\lambda+\lambda^{\mathrm{2}} =\lambda\left(\mathrm{1}+\lambda\right)=\mathrm{0} \\ $$$${y}=\mathrm{C}_{\mathrm{1}} +\mathrm{C}_{\mathrm{2}} {e}^{−{x}} \\ $$$$−−−−−−−−−−− \\ $$$${y}=\mathrm{C}_{\mathrm{1}} +\mathrm{C}_{\mathrm{2}} {e}^{−{x}} \\ $$$$\frac{{dy}}{{dx}}=−\mathrm{C}_{\mathrm{2}} {e}^{−{x}} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{C}_{\mathrm{2}} {e}^{−{x}} \\ $$$$\mathrm{sin}\:\frac{{dy}}{{dx}}+\mathrm{sin}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{0} \\ $$$$−\mathrm{sin}\:\mathrm{C}_{\mathrm{2}} {e}^{−{x}} +\mathrm{sin}\:\mathrm{C}_{\mathrm{2}} {e}^{−{x}} =\mathrm{0}\:\left(\mathrm{T}\right) \\ $$$$\mathrm{so} \\ $$$${y}=\mathrm{C}_{\mathrm{1}} +\mathrm{C}_{\mathrm{2}} {e}^{−{x}} \\ $$$$\mathrm{is}\:\mathrm{a}\:\mathrm{solution},\:\mathrm{but}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{if}\:\mathrm{its}\:\mathrm{the} \\ $$$$\mathrm{full}\:\mathrm{solution}. \\ $$

Commented by prakash jain last updated on 01/Nov/15

  Q=max(Σ_(r=1) ^n sin((d^r y/dx^r )))=Σ_(r=1) ^n sin (d^r y/dx^r )  max seems to be unnecessary function since  there is only one parameter sum.

$$ \\ $$$${Q}={max}\left(\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{sin}\left(\frac{{d}^{{r}} {y}}{{dx}^{{r}} }\right)\right)=\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{sin}\:\frac{{d}^{{r}} {y}}{{dx}^{{r}} } \\ $$$${max}\:{seems}\:{to}\:{be}\:{unnecessary}\:{function}\:{since} \\ $$$${there}\:{is}\:{only}\:{one}\:{parameter}\:\mathrm{sum}. \\ $$

Commented by Yozzi last updated on 01/Nov/15

Sorry for the miscommunication.  I was just thinking then about  the value of the sum Σ_(r=1) ^n sin((d^r y/dx^r ))   assumimg we use one of the solutions.  So, if y=A+Be^(−x) +2nπx use it to  deduce Q.

$${Sorry}\:{for}\:{the}\:{miscommunication}. \\ $$$${I}\:{was}\:{just}\:{thinking}\:{then}\:{about} \\ $$$${the}\:{value}\:{of}\:{the}\:{sum}\:\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{sin}\left(\frac{{d}^{{r}} {y}}{{dx}^{{r}} }\right)\: \\ $$$${assumimg}\:{we}\:{use}\:{one}\:{of}\:{the}\:{solutions}. \\ $$$${So},\:{if}\:{y}={A}+{Be}^{−{x}} +\mathrm{2}{n}\pi{x}\:{use}\:{it}\:{to} \\ $$$${deduce}\:{Q}. \\ $$

Commented by prakash jain last updated on 01/Nov/15

ok. understood.

$${ok}.\:{understood}. \\ $$

Answered by prakash jain last updated on 01/Nov/15

u=(dy/dx),v=(d^2 y/dx^2 ), sin u=−sin v  v=2nπ−u, v=(2n+1)π+u  (d^2 y/dx^2 )=(2n+1)π+(dy/dx)     ....(1)  y=c_1 +c_2 e^x −(2n+1)πx    .....(solution A)  y′=c_2 e^x −(2n+1)π, y′′=c_2 e^x ⇒sin(y′′)=−sin (y′)  (d^2 y/dx^2 )=2nπ−(dy/dx)                ...(2)  Solution for (2)  y=c_1 +c_2 e^(−x) +2nπx           .....(solution B)  y′=−c_2 e^(−x) +2nπ, y′′=c_2 e^(−x) ⇒sin(y′′)=−sin (y′)

$${u}=\frac{{dy}}{{dx}},{v}=\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} },\:\mathrm{sin}\:{u}=−\mathrm{sin}\:{v} \\ $$$${v}=\mathrm{2}{n}\pi−{u},\:{v}=\left(\mathrm{2}{n}+\mathrm{1}\right)\pi+{u} \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\left(\mathrm{2}{n}+\mathrm{1}\right)\pi+\frac{{dy}}{{dx}}\:\:\:\:\:....\left(\mathrm{1}\right) \\ $$$${y}={c}_{\mathrm{1}} +{c}_{\mathrm{2}} {e}^{{x}} −\left(\mathrm{2}{n}+\mathrm{1}\right)\pi{x}\:\:\:\:.....\left(\mathrm{solution}\:{A}\right) \\ $$$${y}'={c}_{\mathrm{2}} {e}^{{x}} −\left(\mathrm{2}{n}+\mathrm{1}\right)\pi,\:{y}''={c}_{\mathrm{2}} {e}^{{x}} \Rightarrow\mathrm{sin}\left({y}''\right)=−\mathrm{sin}\:\left({y}'\right) \\ $$$$\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }=\mathrm{2}{n}\pi−\frac{{dy}}{{dx}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\left(\mathrm{2}\right) \\ $$$$\mathrm{Solution}\:\mathrm{for}\:\left(\mathrm{2}\right) \\ $$$${y}={c}_{\mathrm{1}} +{c}_{\mathrm{2}} {e}^{−{x}} +\mathrm{2}{n}\pi{x}\:\:\:\:\:\:\:\:\:\:\:.....\left(\mathrm{solution}\:\mathrm{B}\right) \\ $$$${y}'=−{c}_{\mathrm{2}} {e}^{−{x}} +\mathrm{2}{n}\pi,\:{y}''={c}_{\mathrm{2}} {e}^{−{x}} \Rightarrow\mathrm{sin}\left({y}''\right)=−\mathrm{sin}\:\left({y}'\right) \\ $$

Commented by Yozzi last updated on 01/Nov/15

Let y=A+Be^(−x) +2nπx (Solution B)  y^′ =−Be^(−x) +2nπ  y^(′′) =Be^(−x)   y^(′′′) =−Be^(−x)   y^4 =Be^(−x)   ....  y^n = { ((−Be^(−x)  for odd n>1)),((Be^(−x)      for even n≥2)) :}  ∴Σ_(r=1) ^n sin(y^((r)) )=sin(2nπ−Be^(−x) )+sin(Be^(−x) )+sin(−Be^(−x) )+sin(Be^(−x) )+...+sin(y^((n)) )  Σ_(r=1) ^n sin(y^((r)) )= { ((−sinBe^(−x)   odd n)),((0                      even n)) :}  Q=max(−sinBe^(−x) )=1   when Be^(−x) =((3π)/2)⇒e^(−x) =((3π)/(2B))  If B>0⇒−x=ln(((3π)/(2B)))  x=ln(((2B)/(3π))).   If B<0, let B=−T, T>0  ∴Σ_(r=1) ^n sin(y^((n)) )=sin(Te^(−x) )  Q=1⇒x=ln(((2T)/π)).

$${Let}\:{y}={A}+{Be}^{−{x}} +\mathrm{2}{n}\pi{x}\:\left({Solution}\:{B}\right) \\ $$$${y}^{'} =−{Be}^{−{x}} +\mathrm{2}{n}\pi \\ $$$${y}^{''} ={Be}^{−{x}} \\ $$$${y}^{'''} =−{Be}^{−{x}} \\ $$$${y}^{\mathrm{4}} ={Be}^{−{x}} \\ $$$$.... \\ $$$${y}^{{n}} =\begin{cases}{−{Be}^{−{x}} \:{for}\:{odd}\:{n}>\mathrm{1}}\\{{Be}^{−{x}} \:\:\:\:\:{for}\:{even}\:{n}\geqslant\mathrm{2}}\end{cases} \\ $$$$\therefore\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{sin}\left({y}^{\left({r}\right)} \right)={sin}\left(\mathrm{2}{n}\pi−{Be}^{−{x}} \right)+{sin}\left({Be}^{−{x}} \right)+{sin}\left(−{Be}^{−{x}} \right)+{sin}\left({Be}^{−{x}} \right)+...+{sin}\left({y}^{\left({n}\right)} \right) \\ $$$$\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{sin}\left({y}^{\left({r}\right)} \right)=\begin{cases}{−{sinBe}^{−{x}} \:\:{odd}\:{n}}\\{\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{even}\:{n}}\end{cases} \\ $$$${Q}={max}\left(−{sinBe}^{−{x}} \right)=\mathrm{1}\: \\ $$$${when}\:{Be}^{−{x}} =\frac{\mathrm{3}\pi}{\mathrm{2}}\Rightarrow{e}^{−{x}} =\frac{\mathrm{3}\pi}{\mathrm{2}{B}} \\ $$$${If}\:{B}>\mathrm{0}\Rightarrow−{x}={ln}\left(\frac{\mathrm{3}\pi}{\mathrm{2}{B}}\right) \\ $$$${x}={ln}\left(\frac{\mathrm{2}{B}}{\mathrm{3}\pi}\right).\: \\ $$$${If}\:{B}<\mathrm{0},\:{let}\:{B}=−{T},\:{T}>\mathrm{0} \\ $$$$\therefore\underset{{r}=\mathrm{1}} {\overset{{n}} {\sum}}{sin}\left({y}^{\left({n}\right)} \right)={sin}\left({Te}^{−{x}} \right) \\ $$$${Q}=\mathrm{1}\Rightarrow{x}={ln}\left(\frac{\mathrm{2}{T}}{\pi}\right). \\ $$$$ \\ $$

Commented by Yozzi last updated on 01/Nov/15

y=A+Be^(−x) +2nπx  ⇒y^′ =−Be^(−x) +2nπ  y^(′′) =Be^(−x)   ∴y^(′′) +y^′ =2nπ    y=A+Be^x +(2n+1)πx  y^′ =Be^x +(2n+1)π  y^(′′) =Be^x   y^(′′) −y^′ =−(2n+1)π

$${y}={A}+{Be}^{−{x}} +\mathrm{2}{n}\pi{x} \\ $$$$\Rightarrow{y}^{'} =−{Be}^{−{x}} +\mathrm{2}{n}\pi \\ $$$${y}^{''} ={Be}^{−{x}} \\ $$$$\therefore{y}^{''} +{y}^{'} =\mathrm{2}{n}\pi \\ $$$$ \\ $$$${y}={A}+{Be}^{{x}} +\left(\mathrm{2}{n}+\mathrm{1}\right)\pi{x} \\ $$$${y}^{'} ={Be}^{{x}} +\left(\mathrm{2}{n}+\mathrm{1}\right)\pi \\ $$$${y}^{''} ={Be}^{{x}} \\ $$$${y}^{''} −{y}^{'} =−\left(\mathrm{2}{n}+\mathrm{1}\right)\pi\: \\ $$$$ \\ $$

Commented by prakash jain last updated on 01/Nov/15

Mistake is sign of solution (A). Corrected.

$$\mathrm{Mistake}\:\mathrm{is}\:\mathrm{sign}\:\mathrm{of}\:\mathrm{solution}\:\left(\mathrm{A}\right).\:{Corrected}. \\ $$

Commented by Yozzi last updated on 02/Nov/15

Awesome.

$${Awesome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com