Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205420 by hardmath last updated on 20/Mar/24

If  a^3  + b^3  + a^2  + b^2  = 4  Then:  a^4  + b^4  ≥ 2

Ifa3+b3+a2+b2=4Then:a4+b42

Answered by Berbere last updated on 21/Mar/24

2(a^4 +b^4 )+a^2 +b^2 +1+1  =a^4 +a^2 +b^4 +b^2 +a^4 +1+b^4 +1  ≥^(AM−GM) 2∣a^3 ∣+2∣b^3 ∣+2a^2 +2b^2 ≥2(a^3 +b^3 +a^2 +b^2 )=8  2(a^4 +b^4 )+a^2 +b^2 ≥6  a^4 +b^4 ≥^(AM−QM) (((a^2 +b^2 )^2 )/2);X=a^2 +b^2 ≥0  a^4 +b^4 ≥Max(((6−X)/2),(X^2 /2))=(1/2)Max(6−X,X^2 )  X^2 +X−6=(X+3)(X−2)    X∈[−3,2]  max((X^2 /2),(1/2)(6−X))=(1/2)(6−X)≥((6−2)/2)=2  X≤−3; Max((x^2 /2),((6−x)/2))=(((−3)^2 )/2)≥2  X≥2  Max((X^2 /2),((6−X)/2))=(X^2 /2)≥2  ⇒∀X=a^2 +b^2 ∈[0,∞[  a^4 +b^4 ≥2

2(a4+b4)+a2+b2+1+1=a4+a2+b4+b2+a4+1+b4+1AMGM2a3+2b3+2a2+2b22(a3+b3+a2+b2)=82(a4+b4)+a2+b26a4+b4AMQM(a2+b2)22;X=a2+b20a4+b4Max(6X2,X22)=12Max(6X,X2)X2+X6=(X+3)(X2)X[3,2]max(X22,12(6X))=12(6X)622=2X3;Max(x22,6x2)=(3)222X2Max(X22,6X2)=X222X=a2+b2[0,[a4+b42

Commented by hardmath last updated on 21/Mar/24

thank you dear professor cool

thankyoudearprofessorcool

Terms of Service

Privacy Policy

Contact: info@tinkutara.com