All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 205423 by hardmath last updated on 20/Mar/24
Ifa,b∈RThen:a2+b2⩾ab+a4+b42
Answered by Berbere last updated on 21/Mar/24
⇔(a2+b2−ab)2⩾a4+b42⇔a4+b42+3a2b2−2ab(a2+b2)⩾0a4+b4=(a2+b2)2−2a2b2⇔(a2+b2)2−2a2b22+3a2b2−2ab(a2+b2)⩾0⇔(a2+b2)2+(2ab)2−2(2ab)(a2+b2)⩾0⇔(a2+b2−2ab)2⩾0True
Commented by Skabetix last updated on 22/Mar/24
commentpasserde(a2+b2−ab)2⩾a4+b42aa4+b42+3a2b2−2ab(a2+b2)⩾0?
Commented by Berbere last updated on 24/Mar/24
squara4+b4+2a2b2+a2b2−2ab(a2+b2)⩾a4+b42⇒a4+b4−a4+b42+3a2b2−2ab(a2+b2)⩾0a4+b42+3a2b2−2ab(a2+b2)⩾0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com