All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 205432 by hardmath last updated on 21/Mar/24
Find:Ξ©=β«02Οln(sinx+1+sin2x)dx
Answered by MathedUp last updated on 21/Mar/24
0cauzβf(z)=f(βz),f(z+Ο)=βf(z),f(z+2Ο)=f(z)So,f(z)isperiodicfunctionthathavingperiodΟβ«02Οf(z)dz=0
Answered by mr W last updated on 21/Mar/24
Ξ©=β«02Οln(sinx+1+sin2x)dx=β«0Οln(sinx+1+sin2x)dx+β«Ο2Οln(sinx+1+sin2x)dx=β«0Οln(sinx+1+sin2x)dx+β«0Οln(sin(x+Ο)+1+sin2(x+Ο))d(x+Ο)=β«0Οln(sinx+1+sin2x)dx+β«0Οln(βsinx+1+sin2x)dx=β«0Οln(sinx+1+sin2x)dx+β«0Οln1sinx+1+sin2xdx=β«0Οln(sinx+1+sin2x)dxββ«0Οln(sinx+1+sin2x)dx=0
Commented by hardmath last updated on 21/Mar/24
cooldearprofessorthankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com