Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 205451 by MrGHK last updated on 21/Mar/24

lim_(x→∞) ∫_0 ^x (dt/(e^(2t) t))

limx0xdte2tt

Answered by Berbere last updated on 21/Mar/24

x→^f e^(−2x) ;over [0,t] t≤(1/2);∃c∈]0,t[ Such  ⇒f(t)−f(0)=tf′(c)  ⇒e^(−2t) −1=−2te^(−2c) ;e^(−2c) ≤0⇒e^(−2t) −1≥−2t  ⇒e^(−2t) ≥1−2t   ∫_0 ^x (dt/(e^(2t) .t))=f(x);f′(x)>0 f increse ⇒(lim_(x→∞) f(x)≥f(a);∀a∈R_+ )  lim_(x→∞) f(x)≥f((1/2))=∫_0 ^(1/2) (e^(−2t) /t)dt≥∫_0 ^(1/2) (1/t)(1−2t)dt  =[ln(t)−2]_0 ^(1/2) =+∞  lim_(x→∞) f(x)=+∞  or just saying;(1/(e^(−2x) x))∼^0 (1/x) diverge

xfe2x;over[0,t]t12;c]0,t[Suchf(t)f(0)=tf(c)e2t1=2te2c;e2c0e2t12te2t12t0xdte2t.t=f(x);f(x)>0fincrese(limxf(x)f(a);aR+)limxf(x)f(12)=012e2ttdt0121t(12t)dt=[ln(t)2]012=+limxf(x)=+orjustsaying;1e2xx01xdiverge

Terms of Service

Privacy Policy

Contact: info@tinkutara.com