Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 205472 by SANOGO last updated on 21/Mar/24

Answered by TheHoneyCat last updated on 01/Apr/24

This will be true if (and only if) the A_n  are all  disjoint.  If they are not, take x∈A_i ∩A_k  (with k≠i)  Σ_(n∈N) I_A_n  (x)≥I_A_i  (x)+I_A_k  (x)≥2  So the innequality has to be false since  ∀X  I_X :X→{0,1}    But if they are for any x  either x∈∪_(n∈N) A_n  so ∃!n_x : x∈A_n_x                so Σ_(n∈N) I_A_n  (x)=I_A_n_x   (x)=1  either x∉∪_(n∈N) A_n  so                    Σ_(n∈N) I_A_n  (x)=0  so yeah... in that case only, it works.

Thiswillbetrueif(andonlyif)theAnarealldisjoint.Iftheyarenot,takexAiAk(withki)nNIAn(x)IAi(x)+IAk(x)2SotheinnequalityhastobefalsesinceXIX:X{0,1}ButiftheyareforanyxeitherxnNAnso!nx:xAnxsonNIAn(x)=IAnx(x)=1eitherxnNAnsonNIAn(x)=0soyeah...inthatcaseonly,itworks.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com