Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 20549 by Tinkutara last updated on 28/Aug/17

Show that if z_1 z_2  + z_3 z_4  = 0 and z_1  +  z_2  = 0, then the complex numbers z_1 ,  z_2 , z_3 , z_4  are concyclic.

$${Show}\:{that}\:{if}\:{z}_{\mathrm{1}} {z}_{\mathrm{2}} \:+\:{z}_{\mathrm{3}} {z}_{\mathrm{4}} \:=\:\mathrm{0}\:{and}\:{z}_{\mathrm{1}} \:+ \\ $$$${z}_{\mathrm{2}} \:=\:\mathrm{0},\:{then}\:{the}\:{complex}\:{numbers}\:{z}_{\mathrm{1}} , \\ $$$${z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} ,\:{z}_{\mathrm{4}} \:{are}\:{concyclic}. \\ $$

Commented by ajfour last updated on 28/Aug/17

Answered by ajfour last updated on 28/Aug/17

Origin is the midpoint of the join  of z_1  and z_2 .    (as z_1 +z_2 =0 )  z_3 z_4 +z_1 z_2 =0   ⇒    z_3 z_4 =z_1 ^2   ⇒  ((z_4 /z_1 ))((z_3 /z_1 ))=1  ⇒ arg((z_4 /z_1 ))=−arg((z_3 /z_1 ))  also   ∣z_3 ∣∣z_4 ∣=∣z_1 ∣^2    or    ∣z_5 ∣∣z_4 ∣=∣z_1 ∣^2   ⇒    xy=R^2   power of point (here origin) is  the same for chord joining z_1 ,z_2   and chord joining z_4 , z_5 .  and as ∣z_3 ∣=∣z_5 ∣ ; z_1 , z_2 , z_3 , z_4  are  concyclic.

$${Origin}\:{is}\:{the}\:{midpoint}\:{of}\:{the}\:{join} \\ $$$${of}\:{z}_{\mathrm{1}} \:{and}\:{z}_{\mathrm{2}} .\:\:\:\:\left({as}\:{z}_{\mathrm{1}} +{z}_{\mathrm{2}} =\mathrm{0}\:\right) \\ $$$${z}_{\mathrm{3}} {z}_{\mathrm{4}} +{z}_{\mathrm{1}} {z}_{\mathrm{2}} =\mathrm{0}\:\:\:\Rightarrow\:\:\:\:{z}_{\mathrm{3}} {z}_{\mathrm{4}} ={z}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\left(\frac{{z}_{\mathrm{4}} }{{z}_{\mathrm{1}} }\right)\left(\frac{{z}_{\mathrm{3}} }{{z}_{\mathrm{1}} }\right)=\mathrm{1} \\ $$$$\Rightarrow\:{arg}\left(\frac{{z}_{\mathrm{4}} }{{z}_{\mathrm{1}} }\right)=−{arg}\left(\frac{{z}_{\mathrm{3}} }{{z}_{\mathrm{1}} }\right) \\ $$$${also}\:\:\:\mid{z}_{\mathrm{3}} \mid\mid{z}_{\mathrm{4}} \mid=\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \: \\ $$$${or}\:\:\:\:\mid{z}_{\mathrm{5}} \mid\mid{z}_{\mathrm{4}} \mid=\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:{xy}={R}^{\mathrm{2}} \\ $$$${power}\:{of}\:{point}\:\left({here}\:{origin}\right)\:{is} \\ $$$${the}\:{same}\:{for}\:{chord}\:{joining}\:{z}_{\mathrm{1}} ,{z}_{\mathrm{2}} \\ $$$${and}\:{chord}\:{joining}\:{z}_{\mathrm{4}} ,\:{z}_{\mathrm{5}} . \\ $$$${and}\:{as}\:\mid{z}_{\mathrm{3}} \mid=\mid{z}_{\mathrm{5}} \mid\:;\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} ,\:{z}_{\mathrm{4}} \:{are} \\ $$$${concyclic}. \\ $$

Commented by Tinkutara last updated on 28/Aug/17

Thank you very much Sir!

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Commented by Tinkutara last updated on 28/Aug/17

Why ∣z_3 ∣ = ∣z_5 ∣? How you have defined  z_5 ?

$$\mathrm{Why}\:\mid{z}_{\mathrm{3}} \mid\:=\:\mid{z}_{\mathrm{5}} \mid?\:\mathrm{How}\:\mathrm{you}\:\mathrm{have}\:\mathrm{defined} \\ $$$${z}_{\mathrm{5}} ? \\ $$

Commented by ajfour last updated on 28/Aug/17

it is reflection of z_3  about the  perpendicular bisector of the join  of z_1  and z_2 . Hence ∣z_5 ∣=∣z_3 ∣ .

$${it}\:{is}\:{reflection}\:{of}\:{z}_{\mathrm{3}} \:{about}\:{the} \\ $$$${perpendicular}\:{bisector}\:{of}\:{the}\:{join} \\ $$$${of}\:{z}_{\mathrm{1}} \:{and}\:{z}_{\mathrm{2}} .\:{Hence}\:\mid{z}_{\mathrm{5}} \mid=\mid{z}_{\mathrm{3}} \mid\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com