All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 205527 by MATHEMATICSAM last updated on 23/Mar/24
Iftherootsofax2+bx+c=0areoneanother′scubethenshowthat(b2−2ac)2=ac(a+c)2.
Answered by A5T last updated on 23/Mar/24
Lettherootsbeαandβ.Then,α=β3andβ=α3α+β=α+α3=−ba;αβ=α4=ca⇒α=+−ca4⇒+−ca4+−c3a34=−ba⇒ca+c3a3+2ca=b2a2⇒ca+c3a3+2c2a2=(b2−2ac)2a4⇒a3c+ac3+2a2c2=ac(a+c)2=(b2−2ac)2
Answered by Rasheed.Sindhi last updated on 24/Mar/24
AnOtherWay(b2−2ac)2=ac(a+c)2⇔(a2(b2a2−2aca2))2=ac(a(aa+ca))2⇔a4((−ba)2−2(ca))2=a3c(1+ca)2⇔((−ba)2−2(ca))2=a3ca4(1+ca)2⇔((−ba)2−2(ca))2=ca(1+ca)2⇔((α+β)2−2(αβ))2=αβ(1+αβ)2⇔(α2+β2)2=αβ(1+2αβ+α2β2)⇔α4+2α2β2+β4=αβ+2α2β2+α3β3α3=β,β3=α⇒α3β3=αβα4=α⋅α3=αβ,β4=β3⋅β=αβ⇔αβ+2α2β2+αβ=αβ+2α2β2+αβ⇔2αβ+2α2β2=2αβ+2α2β2Henceproved
Stillanotherwayα+β=α+α3=−ba⇒b=−aα3−aααβ=αα3=α4=ca⇒c=aα4(b2−2ac)2=ac(a+c)2⇒((−aα3−aα)2−2a(aα4))2=a(aα4)(a+aα4)2⇒(a2(α3+α)2−2a2α4))2=a2(a2α4)(1+α4)2⇒a4((α6+2α4+α2)−2α4))2=(a4α4)(1+α4)2⇒a4((α6+α2)))2=a4α4(1+α4)2⇒a4(α12+2α8+α4=a4α4(1+2α4+α8)⇒a4(α12+2α8+α4)=a4(α4+2α8+α12)Henceproved
Terms of Service
Privacy Policy
Contact: info@tinkutara.com