All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 205645 by hardmath last updated on 26/Mar/24
Find:Ί=âŤ0Ď2sin2x2cosx+3sinxdx=?
Answered by Frix last updated on 26/Mar/24
t=tanx2leadstoâ4âŤt2(t2+1)2(t2â3tâ1)dtwhichcanbesolvedbut...Ifoundthis:s22c+3s=s2(2câ3s)(2c+3s)(2câ3s)=3s313s2â4â2cs213s2â4âΊ1=3âŤĎ20sin3x13sin2xâ4dx=u=cosx3âŤ10u2â113u2â9du==[3u13+213169lnâŁ13u+313uâ3âŁ]01=313+413169(ln2âln(â3+13))Ί2=â2âŤĎ20cosxsin2x13sin2xâ4dx=v=sinxâ2âŤ10v213v2â4dv==[â2v13+213169lnâŁ13v+213vâ2âŁ]01==â213+413169(ln(2+13)âln3))âΊ=113+413169(2ln(5+13)âln3â2ln2)â.232231309
Terms of Service
Privacy Policy
Contact: info@tinkutara.com