Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205645 by hardmath last updated on 26/Mar/24

Find:  Ω = ∫_0 ^( (𝛑/2))  ((sin^2 x)/(2 cosx + 3 sinx)) dx = ?

Find:Ω=∫0π2sin2x2cosx+3sinxdx=?

Answered by Frix last updated on 26/Mar/24

t=tan (x/2) leads to  −4∫(t^2 /((t^2 +1)^2 (t^2 −3t−1)))dt  which can be solved but...  I found this:  (s^2 /(2c+3s))=((s^2 (2c−3s))/((2c+3s)(2c−3s)))=((3s^3 )/(13s^2 −4))−((2cs^2 )/(13s^2 −4))  ⇒  Ω_1 =3∫_0 ^(π/2) ((sin^3  x)/(13sin^2  x −4))dx =^(u=cos x)  3∫_0 ^1 ((u^2 −1)/(13u^2 −9))du=  =[((3u)/(13))+((2(√(13)))/(169))ln ∣(((√(13))u+3)/( (√(13))u−3))∣]_0 ^1 =  (3/(13))+((4(√(13)))/(169))(ln 2 −ln (−3+(√(13))))  Ω_2 =−2∫_0 ^(π/2) ((cos x sin^2  x)/(13sin^2  x −4))dx =^(v=sin x)  −2∫_0 ^1 (v^2 /(13v^2 −4))dv=  =[−((2v)/(13))+((2(√(13)))/(169))ln ∣(((√(13))v+2)/( (√(13))v−2))∣]_0 ^1 =  =−(2/(13))+((4(√(13)))/(169))(ln (2+(√(13))) −ln 3))  ⇒  Ω=(1/(13))+((4(√(13)))/(169))(2ln (5+(√(13))) −ln 3 −2ln 2)  ≈.232231309

t=tanx2leadsto−4∫t2(t2+1)2(t2−3t−1)dtwhichcanbesolvedbut...Ifoundthis:s22c+3s=s2(2c−3s)(2c+3s)(2c−3s)=3s313s2−4−2cs213s2−4⇒Ω1=3∫π20sin3x13sin2x−4dx=u=cosx3∫10u2−113u2−9du==[3u13+213169ln∣13u+313u−3∣]01=313+413169(ln2−ln(−3+13))Ω2=−2∫π20cosxsin2x13sin2x−4dx=v=sinx−2∫10v213v2−4dv==[−2v13+213169ln∣13v+213v−2∣]01==−213+413169(ln(2+13)−ln3))⇒Ω=113+413169(2ln(5+13)−ln3−2ln2)≈.232231309

Terms of Service

Privacy Policy

Contact: info@tinkutara.com