All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 205656 by SANOGO last updated on 26/Mar/24
Answered by TheHoneyCat last updated on 31/Mar/24
(2)⇒(1)Soitc∈R∗telque∀x∈X∣∣T(x)∣∣Y⩾c∣∣x∣∣XSoit(x,x′)∈X2∣∣T(x)−T(x′)∣∣=∣∣T(x−x′)∣∣⩾c∣∣x−x′∣∣T(x)=T(x′)⇒T(x)−T(x′)=0⇒∣∣T(x)−T(x′)∣∣=0⇒c∣∣x−x′∣∣=0⇒∣∣x−x′∣∣=0⇒x−x′=0⇒x=x′Donc(2)⇒TinjectifSoit(tn)unesuitedeIm(X)convergentedansY.Puisque(tn)∈Im(X)N,∃(xn)∈XNtn=T(xn)(tn)etantconvergente,c′estunesuitedeCauchy.L′inegalitesurTpermetdededuire(c′estchiantettrivialaecriredoncjeskip)que(xn)estaussiunesuitedeCauchy.OrXestunespacedeBanach,donc(xn)converge.Notantx∞cettelimiteEncoreuncoupd′inegalitechianteenutilisantl′inegalitedeT,maisaussilalinearitedeTetonobtientqueT(x∞)=t∞d′ouondeduitlafermeturedeIm(X)...
non(2)⇒non(1)Unefacondedefinircest:c:=Sup{Inf{cx:∣∣T(x)∣∣⩾cx∣∣x∣∣},x∈X}Si(2)n′estpasverifie,onatoutsimplementc=+∞.Donconpeuttrouver(xn)telquecxn→+∞Donc(enrenormalisantxnetenlevantlestermesnulles,pouravoir∣∣T(xn)∣∣=1)onobtient∣∣T(xn)∣∣quinepeutconverger,carlesxneuxtendentvers0.Laencorej′explicitepaslesinegaliteparflemme.Maisjepensequec′estbon.sijamaisvousredigezledetailetquecamarchepas...mettezmoiencommentairelesoucietjemismetplusserieusement...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com