All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 205670 by hardmath last updated on 26/Mar/24
Answered by Berbere last updated on 27/Mar/24
Ω=∫13(tan−1(x)x−tan−1(x))2dx∫13(1+x2(x−tan−1(x))2−2x(x−tan−1(x)))dx=(3−1)+∫13−x2+2xtan−1(x)(x−tan−1(x))2dx..E1(x−tan−1(x))=u;u′=−x21+x2(x−tan−1(x))2E=(3−1)+∫13x2(1+x2).(1+x2)−(1+x2)′.(−tan−1(x)+x)(x−tan−1(x))2dx=(3−1)+∫13(−(tan−1(x)−x)′.(1+x2)+(1+x2)′(tan−1(x)−x)(x−tan−1(x))dx3−1+[x2+1tan−1(x)−x]13=3−1+12π−33−8π−4
Commented by hardmath last updated on 27/Mar/24
Thankyoudearprofessorcool
Terms of Service
Privacy Policy
Contact: info@tinkutara.com