Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205772 by mr W last updated on 30/Mar/24

Answered by MM42 last updated on 30/Mar/24

S_n =((√(1×2))−1)  +((√(2×3))−(√(1×2))−1)  +((√(3×4))−(√(2×3))−1)  ⋮  +((√(n(n+1)))−(√((n−1)n))−1)  +((√((n+1)(n+2)))−(√(n(n+1)))−1)  ⇒S_n =(√(n^2 +3n+2))−n−1  ⇒lim_(n→∞)  S_n  =  (1/2)✓

Sn=(1×21)+(2×31×21)+(3×42×31)+(n(n+1)(n1)n1)+((n+1)(n+2)n(n+1)1)Sn=n2+3n+2n1limnSn=12

Answered by A5T last updated on 30/Mar/24

T_0 =(√2)−0−1  T_(n−1) =(√(n^2 +n))−(√(n^2 −n))−1  T_n =(√(n^2 +3n+2))−(√(n^2 +n))−1  S_n =−(n+1)+(√(n^2 +3n+2))  n+1+n+2>2(√((n+1)(n+2)))⇒(√(n^2 +3n+2))<((2n+3)/2)  ⇒S_n =(√(n^2 +3n+2))−n−1<n+(3/2)−n−1=(1/2)  Question⇒lim_(n→∞) S_n =(1/2)

T0=201Tn1=n2+nn2n1Tn=n2+3n+2n2+n1Sn=(n+1)+n2+3n+2n+1+n+2>2(n+1)(n+2)n2+3n+2<2n+32Sn=n2+3n+2n1<n+32n1=12Double subscripts: use braces to clarify

Terms of Service

Privacy Policy

Contact: info@tinkutara.com