Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 20581 by Tinkutara last updated on 28/Aug/17

The surface between wedge and block  is rough (Coefficient of friction μ).  Find out the range of F such that,  there is no relative motion between  wedge and block. The wedge can move  freely on smooth ground.

$${The}\:{surface}\:{between}\:{wedge}\:{and}\:{block} \\ $$$${is}\:{rough}\:\left({Coefficient}\:{of}\:{friction}\:\mu\right). \\ $$$${Find}\:{out}\:{the}\:{range}\:{of}\:{F}\:{such}\:{that}, \\ $$$${there}\:{is}\:{no}\:{relative}\:{motion}\:{between} \\ $$$${wedge}\:{and}\:{block}.\:{The}\:{wedge}\:{can}\:{move} \\ $$$${freely}\:{on}\:{smooth}\:{ground}. \\ $$

Commented by Tinkutara last updated on 28/Aug/17

Commented by ajfour last updated on 28/Aug/17

Commented by ajfour last updated on 28/Aug/17

Diagram above shows the case  when F    is minimum and there  is no relative motiin b/w block  and wedge.  I shall use pseudo force directed  towards left to be able to analyse  equilibrium of block from frame  of wedge.  ΣF_x =0    ⇒−μNcos θ−ma+Nsin θ=0  ...(i)  ΣF_y =0  ⇒ μNsin θ+Ncos θ=mg   ...(ii)  ⇒  N=((mg)/(cos θ+μsin θ))  using this in (i):   ma=((mg(sin θ−μcos θ))/(cos θ+μsin θ))  As  F=(M+m)a  , so  F_(minimum) =(((M+m)g(tan θ−μ))/(1+μtan θ))  for F_(maximum) , μ→−μ  F_(maximum) =(((M+m)g(tan θ+μ))/((1−μtan θ))) .

$${Diagram}\:{above}\:{shows}\:{the}\:{case} \\ $$$${when}\:\boldsymbol{{F}}\:\:\:\:{is}\:{minimum}\:{and}\:{there} \\ $$$${is}\:{no}\:{relative}\:{motiin}\:{b}/{w}\:{block} \\ $$$${and}\:{wedge}. \\ $$$${I}\:{shall}\:{use}\:{pseudo}\:{force}\:{directed} \\ $$$${towards}\:{left}\:{to}\:{be}\:{able}\:{to}\:{analyse} \\ $$$${equilibrium}\:{of}\:{block}\:{from}\:{frame} \\ $$$${of}\:{wedge}. \\ $$$$\Sigma{F}_{{x}} =\mathrm{0}\:\: \\ $$$$\Rightarrow−\mu{N}\mathrm{cos}\:\theta−{ma}+{N}\mathrm{sin}\:\theta=\mathrm{0}\:\:...\left({i}\right) \\ $$$$\Sigma{F}_{{y}} =\mathrm{0} \\ $$$$\Rightarrow\:\mu{N}\mathrm{sin}\:\theta+{N}\mathrm{cos}\:\theta={mg}\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\:\:{N}=\frac{{mg}}{\mathrm{cos}\:\theta+\mu\mathrm{sin}\:\theta} \\ $$$${using}\:{this}\:{in}\:\left({i}\right): \\ $$$$\:{ma}=\frac{{mg}\left(\mathrm{sin}\:\theta−\mu\mathrm{cos}\:\theta\right)}{\mathrm{cos}\:\theta+\mu\mathrm{sin}\:\theta} \\ $$$${As}\:\:{F}=\left({M}+{m}\right){a}\:\:,\:{so} \\ $$$${F}_{{minimum}} =\frac{\left({M}+{m}\right){g}\left(\mathrm{tan}\:\theta−\mu\right)}{\mathrm{1}+\mu\mathrm{tan}\:\theta} \\ $$$${for}\:{F}_{{maximum}} ,\:\mu\rightarrow−\mu \\ $$$${F}_{{maximum}} =\frac{\left({M}+{m}\right){g}\left(\mathrm{tan}\:\theta+\mu\right)}{\left(\mathrm{1}−\mu\mathrm{tan}\:\theta\right)}\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 28/Aug/17

Thank you very much Sir! But can it be  solved without using pseudo force?

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}!\:\mathrm{But}\:\mathrm{can}\:\mathrm{it}\:\mathrm{be} \\ $$$$\mathrm{solved}\:\mathrm{without}\:\mathrm{using}\:\mathrm{pseudo}\:\mathrm{force}? \\ $$

Commented by ajfour last updated on 28/Aug/17

check again, diagram shows  situation when force is minimum.  I corrected my answers.  without pseudo force,  ΣF_y =0, still the same  but ΣF_x =ma  ⇒ Nsin θ−μNcos θ=ma  thats just the difference..

$${check}\:{again},\:{diagram}\:{shows} \\ $$$${situation}\:{when}\:{force}\:{is}\:{minimum}. \\ $$$${I}\:{corrected}\:{my}\:{answers}. \\ $$$${without}\:{pseudo}\:{force}, \\ $$$$\Sigma{F}_{{y}} =\mathrm{0},\:{still}\:{the}\:{same} \\ $$$${but}\:\Sigma{F}_{{x}} ={ma} \\ $$$$\Rightarrow\:{N}\mathrm{sin}\:\theta−\mu{N}\mathrm{cos}\:\theta={ma} \\ $$$${thats}\:{just}\:{the}\:{difference}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com