Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 205873 by universe last updated on 01/Apr/24

∫_0 ^π (1/π^2 ) (x/( (√(1+sin^3 x ))))[(3πcosx+4sinx)sin^2 x+4]dx

0π1π2x1+sin3x[(3πcosx+4sinx)sin2x+4]dx

Answered by Berbere last updated on 02/Apr/24

x→π−x;let Ω=integral  Ω=∫_0 ^π (1/π^2 ).((3πxcos(x)sin^2 (x))/( (√(1+sin^3 (x)))))dx+(1/π^2 )∫_0 ^π ((4(1+sin^3 (x))x)/( (√(1+sin^3 (x)))))dx  =(1/π)∫_0 ^π ((3cos(x)sin^2 (x))/( (√(1+sin^3 (x))))).x+4∫_0 ^π (√(1+sin^3 (x)))xdx  =(1/π).A+4B  B;x→π−x;B=(1/π^2 )∫_0 ^π (√(1+sin^3 (x)))(π−x)dx⇒2B=(1/π)∫_0 ^π (√(1+sin^3 (x)))  B=(1/(2π))∫_0 ^π (√(1+sin^3 (x)))dx  A; { ((u′=((3cos(x)sin^2 (x))/( (√(1+sin^3 (x)))));u=2(√(1+sin^3 (x))))),((v=x⇒v′=1)) :}  A=[2x(√(1+sin^3 (x)))]_0 ^π −2∫_0 ^π (√(1+sin^3 (x)))dx  =2π−2∫_0 ^π (√(1+sin^3 (x)))dx  Ω=(1/π)(2π−2∫_0 ^π (√(1+sin^3 (x)))dx)+4((1/(2π))∫_0 ^π (√(1+sin^3 (x)))dx)  =2

xπx;letΩ=integralΩ=0π1π2.3πxcos(x)sin2(x)1+sin3(x)dx+1π20π4(1+sin3(x))x1+sin3(x)dx=1π0π3cos(x)sin2(x)1+sin3(x).x+40π1+sin3(x)xdx=1π.A+4BB;xπx;B=1π20π1+sin3(x)(πx)dx2B=1π0π1+sin3(x)B=12π0π1+sin3(x)dxA;{u=3cos(x)sin2(x)1+sin3(x);u=21+sin3(x)v=xv=1A=[2x1+sin3(x)]0π20π1+sin3(x)dx=2π20π1+sin3(x)dxΩ=1π(2π20π1+sin3(x)dx)+4(12π0π1+sin3(x)dx)=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com