Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 205904 by RoseAli last updated on 02/Apr/24

Answered by mr W last updated on 02/Apr/24

a+b+c=2  ((abc))^(1/3) ≤((a+b+c)/3)=(2/3)  abc=(((abc))^(1/3) )^3 ≤((2/3))^3 =(8/(27))  (1+(2/a))(1+(2/b))(1+(2/c))  =1+2((1/a)+(1/b)+(1/c))+4((1/(ab))+(1/(bc))+(1/(ca)))+(8/(abc))  =1+2((1/a)+(1/b)+(1/c))+4(((a+b+c)/(abc)))+(8/(abc))  =1+2((1/a)+(1/b)+(1/c))+(8/(abc))+(8/(abc))  =1+2((1/a)+(1/b)+(1/c))+((16)/(abc))  ≥1+2×(3/( ((abc))^(1/3) ))+((16)/(abc))  ≥1+6×(3/2)+16×((27)/8)=64  i.e. minimum of (1+(2/a))(1+(2/b))(1+(2/c))  is 64.

a+b+c=2abc3a+b+c3=23abc=(abc3)3(23)3=827(1+2a)(1+2b)(1+2c)=1+2(1a+1b+1c)+4(1ab+1bc+1ca)+8abc=1+2(1a+1b+1c)+4(a+b+cabc)+8abc=1+2(1a+1b+1c)+8abc+8abc=1+2(1a+1b+1c)+16abc1+2×3abc3+16abc1+6×32+16×278=64i.e.minimumof(1+2a)(1+2b)(1+2c)is64.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com