Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 205935 by EJJDJX last updated on 03/Apr/24

∫∫_D (4y^2 sin(xy))dxdy  = ???  D:       x=y      x=0       y=(√(π/2))               0≤x≤y       0≤y≤(√(π/2))

D(4y2sin(xy))dxdy=???D:x=yx=0y=π20xy0yπ2

Answered by Berbere last updated on 03/Apr/24

∫_0 ^(√(π/2)) ∫_0 ^y 4y^2 sin(xy)dxdy  =∫_0 ^(√(π/2)) −4y[cos(xy)]_0 ^y dy  =∫_0 ^(√(π/2)) −4y[cos(y^2 )−1)dy  =−2∫_0 ^(√(π/2)) (cos(y^2 )−1)dy^2   =2∫_0 ^(√(π/2)) (sin(y^2 )−y^2 )  =2(1−(π/2))

0π20y4y2sin(xy)dxdy=0π24y[cos(xy)]0ydy=0π24y[cos(y2)1)dy=20π2(cos(y2)1)dy2=20π2(sin(y2)y2)=2(1π2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com