Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 205971 by mnjuly1970 last updated on 03/Apr/24

              9  Mathematical    Analysis ( I )    (X , d ) is a metric space and            { p_n }_(n=1) ^∞ is a sequence in X        such that , p_n →^(convergent)  p . If , K= {p_n }_(n=1) ^∞ ∪ { p } then       prove  K , is compact in X .

9MathematicalAnalysis(I)(X,d)isametricspaceand{pn}n=1isasequenceinXsuchthat,pnconvergentp.If,K={pn}n=1{p}thenproveK,iscompactinX.

Commented by aleks041103 last updated on 03/Apr/24

I suppose you meant  K={p_k }_(k=1) ^∞ ∪{p}

IsupposeyoumeantK={pk}k=1{p}

Answered by aleks041103 last updated on 03/Apr/24

If K={p}∪{p_k }_(k=1) ^∞  then the proof is as  follows:  Let O be any open cover of K.  p∈K⇒∃V∈O:p∈V   {: ((V is open)),((p∈V)),((p_k →p)) } ⇒ ∃N∈N: ∀k>N, p_k ∈V  For ∀k=1,...,N, ∃U_k ∈O: p_k ∈U_k , since  O is a cover of K (and p_k ∈K).  Therefore if O′={U_1 ,...,U_N ,V}⊆O,  then by the above construction,  O′ is a finite open subcover of K.    ⇒ K is compact.

IfK={p}{pk}k=1thentheproofisasfollows:LetObeanyopencoverofK.pKVO:pVVisopenpVpkp}NN:k>N,pkVFork=1,...,N,UkO:pkUk,sinceOisacoverofK(andpkK).ThereforeifO={U1,...,UN,V}O,thenbytheaboveconstruction,OisafiniteopensubcoverofK.Kiscompact.

Commented by Frix last updated on 04/Apr/24

I am he as you are he and you are me and  we are all together [John Lennon 1967]

Iamheasyouareheandyouaremeandwearealltogether[JohnLennon1967]

Commented by mnjuly1970 last updated on 03/Apr/24

  thanks alot sir Frix

thanksalotsirFrix

Commented by aleks041103 last updated on 03/Apr/24

No problem.  Bit I′m not Mr Frix, although I feel flattered  to be compared to him  ;)

Noproblem.BitImnotMrFrix,althoughIfeelflatteredtobecomparedtohim;)

Commented by mnjuly1970 last updated on 04/Apr/24

    thank you so much sir aleks.       I am so sorry sir... ⋛

thankyousomuchsiraleks.Iamsosorrysir...

Commented by mnjuly1970 last updated on 04/Apr/24

 ⋛

Answered by Berbere last updated on 04/Apr/24

let u(n)∈N^K   lets show That ∃ϕ N→N increading  such That U_(ϕ(n))  cv  1 if  n Tack finit value  Ther exist N  such That ∀n∈N  U_n ∈{U_1 ,......,U_N };U_1 ,U_2 ,...U_N   So exist U_(1≤m≤N)  That appair infinity times  ϕ N→N  ϕ(n)=  eithe n is defind by  { ((ϕ(1)=m)),((ϕ(n+1)={inf n∈N ∣ϕ(n+1)>ϕ(n)&U_(ϕ(n+1)) =U_m )) :}  ϕ exist since  U_m  repet infinity times  ∀n∈N U_(ϕ(n)) =U_m  cv  if U_n  Tack infinity value  we defind ϕ by  ϕ(1)=U_1 =p_n_1    u_n =p_(v(n))   ϕ(n+1)=inf(m∈N∣ m>ϕ(n),v_m >v_(ϕ(n)) }  ϕ is while definde since u_n  Tack infinity value of p  we canstrant {p_(v(1)) ,p_(v(2)) ....P_(v(n)) ...}  sinc p_n  Cv U_(ϕ(n))  cv  so evrey sequence Hase a sub sequence?Cv  K is compact Sorry for my english

letu(n)NKletsshowThatφNNincreadingsuchThatUφ(n)cv1ifnTackfinitvalueTherexistNsuchThatnNUn{U1,......,UN};U1,U2,...UNSoexistU1mNThatappairinfinitytimesφNNφ(n)=eithenisdefindby{φ(1)=mφ(n+1)={infnNφ(n+1)>φ(n)&Uφ(n+1)=UmφexistsinceUmrepetinfinitytimesnNUφ(n)=UmcvifUnTackinfinityvaluewedefindφbyφ(1)=U1=pn1un=pv(n)φ(n+1)=inf(mNm>φ(n),vm>vφ(n)}φiswhiledefindesinceunTackinfinityvalueofpwecanstrant{pv(1),pv(2)....Pv(n)...}sincpnCvUφ(n)cvsoevreysequenceHaseasubsequence?CvKiscompactSorryformyenglish

Commented by mnjuly1970 last updated on 05/Apr/24

thank you so much sir

thankyousomuchsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com