Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 206024 by MaruMaru last updated on 05/Apr/24

proove  e^(iπ) +1=0

prooveeiπ+1=0

Answered by Tinku Tara last updated on 05/Apr/24

e^(iπ) =cosπ+isinπ=−1

eiπ=cosπ+isinπ=1

Answered by Frix last updated on 06/Apr/24

1.  e^(ix) =cos x +i sin x (?)    Let f(x)=((cos x +i sin x)/e^(ix) )    (df/dx)=     [Rule ((u/v))′=((u′v−v′u)/v^2 )]  =((e^(ix) (d/dx)[cos x +i sin x]−(cos x +i sin x)(d/dx)[e^(ix) ])/((e^(ix) )^2 ))=  =((e^(ix) (−sin x +i cos x)−(cos x +i sin x)e^(ix) i)/((e^(ix) )^2 ))=  =((e^(ix) ((−sin x +i cos x)−(i cos x −sin x)))/((e^(ix) )^2 ))=  =0  ⇒  ((cos x +i sin x)/e^(ix) ) is a constant function  f(0)=((1+0i)/1)=1 ⇒ f(x)=1  ⇔ ((cos x +i sin x)/e^(ix) )=1 ⇔ e^(ix) =cos x +i sin x  2.  e^(iπ) =cos π +i sin π =−1+0i=−1  e^(iπ) =−1  e^(iπ) +1=0  q.e.d.

1.eix=cosx+isinx(?)Letf(x)=cosx+isinxeixdfdx=[Rule(uv)=uvvuv2]=eixddx[cosx+isinx](cosx+isinx)ddx[eix](eix)2==eix(sinx+icosx)(cosx+isinx)eixi(eix)2==eix((sinx+icosx)(icosxsinx))(eix)2==0cosx+isinxeixisaconstantfunctionf(0)=1+0i1=1f(x)=1cosx+isinxeix=1eix=cosx+isinx2.eiπ=cosπ+isinπ=1+0i=1eiπ=1eiπ+1=0q.e.d.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com