Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 206047 by universe last updated on 05/Apr/24

Answered by aleks041103 last updated on 06/Apr/24

y′=y+const.  ⇒y=c_2 e^x −c_1   ⇒y′=y+c_1   ⇒c_1 =∫_0 ^( 1) y(x)dx=∫_0 ^( 1) (c_2 e^x −c_1 )dx=  =c_2 (e^1 −e^0 )−c_1 (1−0)=  =(e−1)c_2 −c_1   ⇒2c_1 =(e−1)c_2   ⇒f(x)=c_2 (e^x −((e−1)/2))=c(2e^x +1−e)  f(0)=1⇒c(2+1−e)=1⇒c=(1/(3−e))  ⇒f(x)=((2e^x +1−e)/(3−e))  (a) f′′(x)=(2/(3−e))e^x ⇒f ′′(0)=(2/(3−e))  (b) f(1)=((1+e)/(3−e))  (c) lim_(x→∞)  ((f(x)−1)/x) = lim_(x→∞)  ((f(x))/x) = (2/(3−e))lim_(x→∞) (e^x /x)=+∞  (d) f ′(x) = (2/(3−e))e^x ⇒((f ′(ln(3−e)))/2)=1

y=y+const.y=c2exc1y=y+c1c1=01y(x)dx=01(c2exc1)dx==c2(e1e0)c1(10)==(e1)c2c12c1=(e1)c2f(x)=c2(exe12)=c(2ex+1e)f(0)=1c(2+1e)=1c=13ef(x)=2ex+1e3e(a)f(x)=23eexf(0)=23e(b)f(1)=1+e3e(c)limxf(x)1x=limxf(x)x=23elimxexx=+(d)f(x)=23eexf(ln(3e))2=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com