Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 206063 by MATHEMATICSAM last updated on 06/Apr/24

If (x + (√(1 + x^2 )))(y + (√(1 + y^2 ))) = 1 then  find (x + y)^2 .

If(x+1+x2)(y+1+y2)=1thenfind(x+y)2.

Answered by mr W last updated on 06/Apr/24

x+(√(1+x^2 ))=−y+(√(1+(−y)^2 ))  f(x)=x+(√(1+x^2 )) is strictly increasing.  if f(a)=f(b), then a=b.  ⇒x=−y  ⇒x+y=0 ⇒(x+y)^2 =0

x+1+x2=y+1+(y)2f(x)=x+1+x2isstrictlyincreasing.iff(a)=f(b),thena=b.x=yx+y=0(x+y)2=0

Answered by Berbere last updated on 06/Apr/24

y=sh(t)=x=sh(w)  (sh(w)+ch(w))(sh(t)+ch(t))=1  e^w .e^t =1  w+t=0  x+y=sh(w)+sh(−w)=0

y=sh(t)=x=sh(w)(sh(w)+ch(w))(sh(t)+ch(t))=1ew.et=1w+t=0x+y=sh(w)+sh(w)=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com