Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 206064 by mr W last updated on 06/Apr/24

Commented by mr W last updated on 06/Apr/24

an unsolved old question (Q172465)

anunsolvedoldquestion(Q172465)

Answered by A5T last updated on 06/Apr/24

WLOG, let N be the origin and BNE coincide  with the real axis(or x axis).  B(−b,0),E(b,0),N(0,0), C(x,y), D(u,v)  ⇒BC=(√((x+b)^2 +y^2 ))=AB=(√(x^2 +y^2 +b^2 +2xb))  [ABC]=((√3)/4)(x^2 +y^2 +b^2 +2xb)  A(((x−b−y(√3))/2),((x(√3)+b(√3)+y)/2));  F(((u+b−v(√3))/2),((u(√3)−b(√3)+v)/2))  DE=(√((u−b)^2 +v^2 ))=(√(u^2 +v^2 +b^2 −2ub))  ⇒[FED]=((√3)/4)(u^2 +v^2 +b^2 −2ub)  P(((2x+b−v(√3))/4),((2y+u(√3)−b(√3)+v)/4))  M(((2u+x−b−y(√3))/4),((2v+x(√3)+b(√3)+y)/4))  ⇒[PNM]=(1/2)∣(((2x+b−v(√3))(2v+x(√3)+b(√3)+y))/(16))  −(((2y+u(√3)−b(√3)+v)(2u+x−b−y(√3)))/(16))∣  =(((√3)∣x^2 +y^2 −u^2 −v^2 +2bu+2bx∣)/(16))  ∣[ABC]−[DEF]∣=(((√3)∣x^2 +y^2 +2xb+2ub−u^2 −v^2 ∣)/4)  ⇒(([PNM[)/(∣[ABC−[DEF]∣))=(((√3)/(16))/((√3)/4))=(1/4)

WLOG,letNbetheoriginandBNEcoincidewiththerealaxis(orxaxis).B(b,0),E(b,0),N(0,0),C(x,y),D(u,v)BC=(x+b)2+y2=AB=x2+y2+b2+2xb[ABC]=34(x2+y2+b2+2xb)A(xby32,x3+b3+y2);F(u+bv32,u3b3+v2)DE=(ub)2+v2=u2+v2+b22ub[FED]=34(u2+v2+b22ub)P(2x+bv34,2y+u3b3+v4)M(2u+xby34,2v+x3+b3+y4)[PNM]=12(2x+bv3)(2v+x3+b3+y)16(2y+u3b3+v)(2u+xby3)16=3x2+y2u2v2+2bu+2bx16[ABC][DEF]∣=3x2+y2+2xb+2ubu2v24[PNM[[ABC[DEF]=31634=14

Commented by mr W last updated on 07/Apr/24

��

Answered by mr W last updated on 07/Apr/24

Commented by mr W last updated on 07/Apr/24

say BN=NE=c  x_A =−c+a cos α  y_A =a sin α  x_D =c−b cos β  y_D =b sin β  x_M =((x_A +x_D )/2)=((a cos α−b cos β)/2)  y_M =((y_A +y_D )/2)=((a sin α+b sin β)/2)  similarly  x_P =((a cos ((π/3)−α)−b cos ((π/3)−β))/2)  y_P =−((a sin ((π/3)−α)+b sin ((π/3)−β))/2)  [MNP]=∣(((x_M +x_P )(y_M −y_P )−x_M y_M +x_P y_P )/2)∣  [MNP]=∣((x_P y_M −x_M y_P )/2)∣  [MNP]=∣(((a cos ((π/3)−α)−b cos ((π/3)−β))(a sin α+b sin β)+(a cos α−b cos β)(a sin ((π/3)−α)+b sin ((π/3)−β)))/8)∣  [MNP]=∣((a^2  sin α cos ((π/3)−α)−ab sin α cos ((π/3)−β)+ab sin β cos ((π/3)−α)−b^2  sin β cos ((π/3)−β)+a^2  cos α sin ((π/3)−α)+ab cos α sin ((π/3)−β)−ab cos β sin ((π/3)−α)−b^2  cos β sin ((π/3)−β))/8)∣  [MNP]=∣((a^2  sin (π/3)+ab sin ((π/3)−α−β)+ab sin (α+β−(π/3))−b^2  sin (π/3))/8)∣  [MNP]=∣(((a^2 −b^2 ) sin (π/3))/8)∣  [MNP]=∣(((√3)(a^2 −b^2 ))/(16))∣  since X=(((√3)a^2 )/4), Y=(((√3)b^2 )/4)  ⇒ [MNP]=((∣X−Y∣)/4) ✓

sayBN=NE=cxA=c+acosαyA=asinαxD=cbcosβyD=bsinβxM=xA+xD2=acosαbcosβ2yM=yA+yD2=asinα+bsinβ2similarlyxP=acos(π3α)bcos(π3β)2yP=asin(π3α)+bsin(π3β)2[MNP]=∣(xM+xP)(yMyP)xMyM+xPyP2[MNP]=∣xPyMxMyP2[MNP]=∣(acos(π3α)bcos(π3β))(asinα+bsinβ)+(acosαbcosβ)(asin(π3α)+bsin(π3β))8[MNP]=∣a2sinαcos(π3α)absinαcos(π3β)+absinβcos(π3α)b2sinβcos(π3β)+a2cosαsin(π3α)+abcosαsin(π3β)abcosβsin(π3α)b2cosβsin(π3β)8[MNP]=∣a2sinπ3+absin(π3αβ)+absin(α+βπ3)b2sinπ38[MNP]=∣(a2b2)sinπ38[MNP]=∣3(a2b2)16sinceX=3a24,Y=3b24[MNP]=XY4

Answered by aleks041103 last updated on 08/Apr/24

Here is a vectorial way to appoach this.    Firstly, we should note that the vectors M, N  and P  are linear combinations of the vectors  of the initial 6 vertices − A, B, C,D,E,F. More precisely M,N,P  are the average of some 2 vertices.  For example  N=(1/2)(B+E)    Secondly, by the first observation, if we   translate △DFN by a vector v  then the vertices of △PMN translate by (1/2)v and  therefore only the triangle′s position will change.  In particular, its area remains the same.    Thirdly, translate the pink △, s.t F≡C≡P≡O,  where O is the beginning of the coordinate  system.  Then  M=(1/2)(A+D)  N=(1/2)(B+E)  If × is the vector cross product:  2se_z =M×N=(1/4)(A+D)×(B+E)=  =(1/4)(A×B+A×E+D×B+D×E)  A×B=2xe_z   E×D=2ye_z   ⇒se_z =(1/4)(x−y)e_z +                +(e_z /8)(∣D∣∣B∣sin(∠DOB)−∣A∣∣E∣sin(∠AOE))  Since the triangles are equilateral, ∣A∣=∣B∣=a,  ∣D∣=∣E∣=b.  Also  ∠DOB=∠AOB+∠DOA=  =60+∠DOA=  =∠DOE+∠DOA=∠AOE    Therefore, finally:  ⇒s=(1/4)∣x−y∣

Hereisavectorialwaytoappoachthis.Firstly,weshouldnotethatthevectorsM,NandParelinearcombinationsofthevectorsoftheinitial6verticesA,B,C,D,E,F.MorepreciselyM,N,Paretheaverageofsome2vertices.ForexampleN=12(B+E)Secondly,bythefirstobservation,ifwetranslateDFNbyavectorvthentheverticesofPMNtranslateby12vandthereforeonlythetrianglespositionwillchange.Inparticular,itsarearemainsthesame.Thirdly,translatethepink,s.tFCPO,whereOisthebeginningofthecoordinatesystem.ThenM=12(A+D)N=12(B+E)If×isthevectorcrossproduct:2sez=M×N=14(A+D)×(B+E)==14(A×B+A×E+D×B+D×E)A×B=2xezE×D=2yezsez=14(xy)ez++ez8(D∣∣Bsin(DOB)A∣∣Esin(AOE))Sincethetrianglesareequilateral,A∣=∣B∣=a,D∣=∣E∣=b.AlsoDOB=AOB+DOA==60+DOA==DOE+DOA=AOETherefore,finally:s=14xy

Commented by mr W last updated on 08/Apr/24

��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com