All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 206095 by RoseAli last updated on 06/Apr/24
Answered by Frix last updated on 07/Apr/24
limx→0x−sinxx−tanx=[l′Hopital^]limx→0ddx[x−sinx]ddx[x−tanx]==limx→01−cosx−tan2xLett=tanx2;x→0⇒t→0cosx=1−t21+t2;tanx=2t1−t2limx→01−cosx−tan2x=limt→02t21+t2−4t2(1−t2)2==limt→0−(1−t2)22(t2+1)=−12
Answered by MM42 last updated on 07/Apr/24
x−sinx∼16x3&x−tanx∼−13x3⇒limx→016x3−13x3=−12✓
Terms of Service
Privacy Policy
Contact: info@tinkutara.com