Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 206095 by RoseAli last updated on 06/Apr/24

Answered by Frix last updated on 07/Apr/24

lim_(x→0)  ((x−sin x)/(x−tan x))  =^([l′Ho^� pital])  lim_(x→0)  (((d/dx)[x−sin x])/((d/dx)[x−tan x])) =  =lim_(x→0)  ((1−cos x)/(−tan^2  x))  Let t=tan (x/2); x→0 ⇒ t→0  cos x =((1−t^2 )/(1+t^2 )); tan x =((2t)/(1−t^2 ))  lim_(x→0)  ((1−cos x)/(−tan^2  x)) =lim_(t→0)  (((2t^2 )/(1+t^2 ))/(−((4t^2 )/((1−t^2 )^2 )))) =  =lim_(t→0)  −(((1−t^2 )^2 )/(2(t^2 +1))) =−(1/2)

limx0xsinxxtanx=[lHopital^]limx0ddx[xsinx]ddx[xtanx]==limx01cosxtan2xLett=tanx2;x0t0cosx=1t21+t2;tanx=2t1t2limx01cosxtan2x=limt02t21+t24t2(1t2)2==limt0(1t2)22(t2+1)=12

Answered by MM42 last updated on 07/Apr/24

x−sinx∼ (1/6)x^3    &   x−tanx∼−(1/3)x^3   ⇒lim_(x→0)  (((1/6)x^3 )/(−(1/3)x^3 )) =−(1/2)  ✓

xsinx16x3&xtanx13x3limx016x313x3=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com