Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206096 by RoseAli last updated on 06/Apr/24

∫(1/(x^3 (√(x^2 −1)))) .dx

1x3x21.dx

Answered by Frix last updated on 07/Apr/24

∫(dx/(x^3 (√(x^2 −1)))) =^(t=(√(x^2 −1)))  ∫(dt/((t^2 +1)^2 ))  From here we could use Ostrogradski′s  Method or this:  ∫(dt/((t^2 +1)^2 )) =^(u=tan^(−1)  t)  ∫cos^2  u du=  =(1/2)∫(1+cos 2u)du=  =(u/2)+((sin 2u)/4)=((tan^(−1)  t)/2)+(t/(2(t^2 +1)))=  =((tan^(−1)  (√(x^2 −1)))/2)+((√(x^2 −1))/(2x))+C

dxx3x21=t=x21dt(t2+1)2FromherewecoulduseOstrogradskisMethodorthis:dt(t2+1)2=u=tan1tcos2udu==12(1+cos2u)du==u2+sin2u4=tan1t2+t2(t2+1)==tan1x212+x212x+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com