All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 206200 by Shrodinger last updated on 09/Apr/24
∫xsinx1−cosxdx
Answered by Frix last updated on 09/Apr/24
∫xsinx1−cosxdx=i∫x(eix+1)eix−1dx==i∫xdx+2i∫xeix−1dxi∫xdx=ix222i∫xeix−1dx=t=eix−1−2i∫ln(t+1)t(t+1)dt==2i∫ln(t+1)t+1dt−2i∫ln(t+1)tdt==iln2(t+1)+2iLi2(t)==−ix2+2iLi2(eix−1)⇒∫xsinx1−cosxdx=(2Li2(eix−1)−x22)i+C
Commented by TonyCWX08 last updated on 10/Apr/24
LookslikeyoualsoknowtheDilogarithmFunction!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com