Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206200 by Shrodinger last updated on 09/Apr/24

∫((xsinx)/(1−cosx))dx

xsinx1cosxdx

Answered by Frix last updated on 09/Apr/24

∫((xsin x)/(1−cos x))dx=i∫((x(e^(ix) +1))/(e^(ix) −1))dx=  =i∫xdx+2i∫(x/(e^(ix) −1))dx  i∫xdx=i(x^2 /2)  2i∫(x/(e^(ix) −1))dx =^(t=e^(ix) −1)  −2i∫((ln (t+1))/(t(t+1)))dt=  =2i∫((ln (t+1))/(t+1))dt−2i∫((ln (t+1))/t)dt=  =i ln^2  (t+1) +2i Li_2  (t) =  =−ix^2 +2i Li_2  (e^(ix) −1)  ⇒  ∫((xsin x)/(1−cos x))dx=(2Li_2  (e^(ix) −1) −(x^2 /2))i+C

xsinx1cosxdx=ix(eix+1)eix1dx==ixdx+2ixeix1dxixdx=ix222ixeix1dx=t=eix12iln(t+1)t(t+1)dt==2iln(t+1)t+1dt2iln(t+1)tdt==iln2(t+1)+2iLi2(t)==ix2+2iLi2(eix1)xsinx1cosxdx=(2Li2(eix1)x22)i+C

Commented by TonyCWX08 last updated on 10/Apr/24

Looks like you also know the Dilogarithm Function!

LookslikeyoualsoknowtheDilogarithmFunction!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com