All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 206442 by universe last updated on 14/Apr/24
Answered by Berbere last updated on 14/Apr/24
letf(x)=eg(x);particularSolutionjusttosimplifietheproblems;f(0)=1=eg(0)⇒g(0)=0⇒f′(x)=g′eg(x);f″(x)=(g′2+g″)eg(x)⇒(g′2+g″)=x2−1;g′=tt2+t′=x2−1;(t=−xworckg(x)=−x22letf(x)=k(x)e−x22⇒f′(x)=(−xk+k′)e−x22f″(x)=(−k−xk′+k″+x2k−xk′)Eq⇔(k″−2xk′+x2k−k)e−x22=(x2−1)ke−x22⇔k″−2xk′=0;h(x)=k′⇒h′(x)−2xh(x)=0⇒h(x)=kex2k(x)=∫kex2dx=c+k∫ex2dx∫0tex2=2πerfi(t)k(x)=c+2πk.erfi(x)f(x)=2kπerfi(x)e−x22+ce−x22f(0)=1⇒c=1;erfi(0)=0;f(x)=2.aπerfi(x)e−x22+e−x22=(c.erfi(x)+1)e−x22;c∈R
Terms of Service
Privacy Policy
Contact: info@tinkutara.com