All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 206471 by MATHEMATICSAM last updated on 15/Apr/24
Ifasinθ=bcosθ=2ctanθ1−tan2θthenprovethat(a2−b2)2=4c2(a2+b2).
Answered by lepuissantcedricjunior last updated on 15/Apr/24
asinθ=2ctanθ1−tan2θ=ctan2θ=2csinθcosθ2cos2θ−1=bcosθ⇔a=2ccosθ2cos2θ−1;b=2csinθ2cos2θ−1ona(a2−b2)2=(4c2cos2θ(2cos2θ−1)2)2=16c4(cos2θcos2(2θ))2⇒(a2−b2)2=16c4(1cos2(2θ))=16c4[14c2(4c2sin2θcos2(2θ)+4c2cos2θcos2(2θ))]=4c2(a2+b2)⇒(a2−b2)2=4c2(a2+b2).........lepuissantcedricjunior.....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com