Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 206473 by hardmath last updated on 15/Apr/24

If   4^p  = 5  Find:   2^(3p)  = ?

If4p=5Find:23p=?

Answered by A5T last updated on 15/Apr/24

2^(2p) =5⇒2^(3p) =(√(125))    p=((log_2 5)/2)⇒2^(3p) =2^(log_2 (5^(3/2) )) =5^(3/2) =(√(125))=5(√5)

22p=523p=125p=log25223p=2log2(532)=532=125=55

Commented by hardmath last updated on 15/Apr/24

thank you very much professor

thankyouverymuchprofessor

Answered by Rasheed.Sindhi last updated on 15/Apr/24

2^(3p) =(2^2 )^((3p)/2) =(4^p )^(3/2) =5^(3/2) =(√(125)) =5(√5)

23p=(22)3p2=(4p)3/2=53/2=125=55

Answered by BaliramKumar last updated on 16/Apr/24

2^(2p)  = 5          ⇒  2 = 5^(1/(2p))   2^(3p)  = (5^(1/(2p)) )^(3p)  = 5^((3p)/(2p))  = 5^(3/2)  = 5(√5)

22p=52=512p23p=(512p)3p=53p2p=532=55

Answered by Skabetix last updated on 16/Apr/24

(2^2 )^p =5  ⇔ 2^(2p) =5  ⇔(2^(2p) )^(3/2) =5^(3/2)   ⇔2^(2p×(3/2)) =5^(3/2)   ⇔2^(3p) =5^(3/2) =5(√5)

(22)p=522p=5(22p)32=53222p×32=53223p=532=55

Terms of Service

Privacy Policy

Contact: info@tinkutara.com