Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 206500 by MATHEMATICSAM last updated on 16/Apr/24

If asin^2 θ + bcos^2 θ = c, bsin^2 φ + acos^2 φ = d  and atanθ = btanφ  then prove that  (1/a) + (1/b) = (1/c) + (1/d) .

Ifasin2θ+bcos2θ=c,bsin2ϕ+acos2ϕ=dandatanθ=btanϕthenprovethat1a+1b=1c+1d.

Answered by Berbere last updated on 17/Apr/24

suppse cos(θ).cos(φ)≠0  (1)⇔atan^2 (θ)+b=c(1+tan^2 (θ))⇔tan^2 (θ)=((c−b)/(a−c))  (2)⇔((d−a)/(b−d))=tan^2 (φ)  (b^2 /a^2 )=(((c−b)(b−d))/((a−c)(d−a)))⇔(1−(c/a))((d/a)−1)=((c/b)−1)(1−(d/b))  ⇔((c+d)/a)−((cd)/a^2 )=((c+d)/b)−((cd)/b^2 )  ⇔(c+d)((1/a)−(1/b))+cd((1/b^2 )−(1/a^2 ))=0  ⇔(c+d)((1/a)−(1/b))−cd((1/a)−(1/b))((1/a)+(1/b))=0  ⇔((1/a)−(1/b))(c+d−cd((1/a)+(1/b)))=0  if a=b⇒c=d=a=b⇒True  if c+d−cd((1/a)+(1/b))=0⇒cd((1/a)+(1/b))=c+d  if cd≠0≪The result implie abcd#0  ⇒(1/a)+(1/b)=(1/d)+(1/c)  case (2)  cos(θ)cos(φ)=0 impossibl due to the condition  (atan (θ)=btan (φ))  so abcd#0;cos(θ)cos(φ)#0  (1/a)+(1/b)=(1/d)+(1/c)

suppsecos(θ).cos(ϕ)0(1)atan2(θ)+b=c(1+tan2(θ))tan2(θ)=cbac(2)dabd=tan2(ϕ)b2a2=(cb)(bd)(ac)(da)(1ca)(da1)=(cb1)(1db)c+dacda2=c+dbcdb2(c+d)(1a1b)+cd(1b21a2)=0(c+d)(1a1b)cd(1a1b)(1a+1b)=0(1a1b)(c+dcd(1a+1b))=0ifa=bc=d=a=bTrueifc+dcd(1a+1b)=0cd(1a+1b)=c+dYou can't use 'macro parameter character #' in math mode1a+1b=1d+1ccase(2)cos(θ)cos(ϕ)=0impossiblduetothecondition(atan(θ)=btan(ϕ))You can't use 'macro parameter character #' in math mode1a+1b=1d+1c

Answered by Frix last updated on 17/Apr/24

One possible path:  cos^2  θ =((a−c)/(a−b))∧cos^2  φ =−((b−d)/(a−b))  atan θ =btan φ =x ⇒  θ=tan^(−1)  (x/a) ∧φ=tan^(−1)  (x/b)  ⇒  x^2 =−((a^2 (b−c))/(a−c))=−(((a−d)b^2 )/(b−d))  ⇒  d=−((abc)/(ab−ac−bd))  ⇒  (1/d)=(1/a)+(1/b)−(1/c)  (1/a)+(1/b)=(1/c)+(1/d)

Onepossiblepath:cos2θ=acabcos2ϕ=bdabatanθ=btanϕ=xθ=tan1xaϕ=tan1xbx2=a2(bc)ac=(ad)b2bdd=abcabacbd1d=1a+1b1c1a+1b=1c+1d

Terms of Service

Privacy Policy

Contact: info@tinkutara.com