All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 206500 by MATHEMATICSAM last updated on 16/Apr/24
Ifasin2θ+bcos2θ=c,bsin2ϕ+acos2ϕ=dandatanθ=btanϕthenprovethat1a+1b=1c+1d.
Answered by Berbere last updated on 17/Apr/24
suppsecos(θ).cos(ϕ)≠0(1)⇔atan2(θ)+b=c(1+tan2(θ))⇔tan2(θ)=c−ba−c(2)⇔d−ab−d=tan2(ϕ)b2a2=(c−b)(b−d)(a−c)(d−a)⇔(1−ca)(da−1)=(cb−1)(1−db)⇔c+da−cda2=c+db−cdb2⇔(c+d)(1a−1b)+cd(1b2−1a2)=0⇔(c+d)(1a−1b)−cd(1a−1b)(1a+1b)=0⇔(1a−1b)(c+d−cd(1a+1b))=0ifa=b⇒c=d=a=b⇒Trueifc+d−cd(1a+1b)=0⇒cd(1a+1b)=c+dYou can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math mode⇒1a+1b=1d+1ccase(2)cos(θ)cos(ϕ)=0impossiblduetothecondition(atan(θ)=btan(ϕ))You can't use 'macro parameter character #' in math modeYou can't use 'macro parameter character #' in math mode1a+1b=1d+1c
Answered by Frix last updated on 17/Apr/24
Onepossiblepath:cos2θ=a−ca−b∧cos2ϕ=−b−da−batanθ=btanϕ=x⇒θ=tan−1xa∧ϕ=tan−1xb⇒x2=−a2(b−c)a−c=−(a−d)b2b−d⇒d=−abcab−ac−bd⇒1d=1a+1b−1c1a+1b=1c+1d
Terms of Service
Privacy Policy
Contact: info@tinkutara.com