All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 206522 by MrGHK last updated on 17/Apr/24
Answered by Berbere last updated on 17/Apr/24
u′=xln2(x)⇒u=12(x2ln2(x)−x2ln(x)+x22)v=Li2(1+xx);v′=−1x2.−ln(−1x)1+xx=−ln(−x)x(1+x)IBP=12[(x2ln2(x)−x22ln(x)+x22)Li2(1+xx)]01+12∫01x1+xln(−x)(xln2(x)−xln(x)+x2)dx‘‘Li2(z)+Li2(1−1z)=−(ln(z))22″⇒Li2(1+zz)=Li2(−z)−12(ln(−z))2⇒limx→0xLi2(1+xx)=0A=14Li2(2)+12∫01x2ln2(x)ln(−x)1+x−12∫01x2ln(x)ln(−x)1+xdx+14∫01x21+xln(−x)dxln(−x)=ln(x)+iπ∫01x2lnn(x)ln(−x)1+xdx=∫01x2lnn+1(x)1+xdx+iπ∫01x2lnn(x)dx1+x=∫01x2lnm(x)1+x=∑n⩾0(−1)nxn+2lnm(x)dx=H(m)=∑n⩾0(−1)n∫01xn+2lnm(x)=∑n⩾0(−1)n∫0∞(−t)me−(n+2)tdt=(−1)m∑n⩾0(−1)nΓ(m+1)(n+2)m+1=(−1)mm!(∑n⩾0(−1)n+2(n+2)m+1)=(−1)mm!(∑n⩾1(−1)nnm+1+1)∑n⩾1(−1)nnm+1=(1−12m)ζ(m+1);∀m⩾1H=(−1)mm!((1−12m)ζ(m+1)+1)A=Li2(2)4+12∫01x2ln3(x)1+x+iπ2∫01x2ln2(x)1+xdx−12∫01x2ln2(x)1+x+12∫01x2iπln(x)1+xdx+14∫01x2ln(x)1+xdx+iπ4∫01x21+xdx=Li2(2)4+12H(3)−H(2)2+14H(1)+iπ2(H(2)+H(1))+iπ2∫01x21+xdxeasyTocontinue
Commented by MrGHK last updated on 18/Apr/24
thankssirNicesolution
Commented by Berbere last updated on 18/Apr/24
withePleasur
Terms of Service
Privacy Policy
Contact: info@tinkutara.com