Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206536 by cortano21 last updated on 18/Apr/24

    ⋖ ♠[2^x  sin ((√(4−2^(x+2) )) )

Extra \left or missing \right

Commented by Frix last updated on 18/Apr/24

Simply use t=(√(1−2^x ))

Simplyuset=12x

Answered by lepuissantcedricjunior last updated on 20/Apr/24

I=∫((2^x sin((√(4−2^(x+2) ))))/( (√(1−2^x ))cos((√(1−2^x )))))dx    =∫((2^x sin(2(√(1−2^x ))))/( (√(1−2^x ))cos((√(1−2^x )))))dx    =∫((2^(x+1) sin((√(1−2^x ))))/( (√(1−2^x ))))dx    posons 1−2^x =t^2 =>2^x =1−t^2   =>ln2×2^x dx=−2tdt  ⇒dx=−((2t)/((1−t^2 )ln2)) dt  ⇔I=∫((−4t(1−t^2 )sint)/(tln2(1−t^2 )))dt         =∫−4((sint)/(ln(2)))dt=4((cost)/(ln2))+c  c∈R  ⇔I=((4cos((√(1−2^x ))))/(ln2))+c    c∈R

I=2xsin(42x+2)12xcos(12x)dx=2xsin(212x)12xcos(12x)dx=2x+1sin(12x)12xdxposons12x=t2=>2x=1t2=>ln2×2xdx=2tdtdx=2t(1t2)ln2dtI=4t(1t2)sinttln2(1t2)dt=4sintln(2)dt=4costln2+ccRI=4cos(12x)ln2+ccR

Terms of Service

Privacy Policy

Contact: info@tinkutara.com