Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 206571 by mr W last updated on 19/Apr/24

Commented by MathematicalUser2357 last updated on 26/Dec/24

Translation - What is the area S? (This question asks to calculate the area of S)

Answered by cortano21 last updated on 19/Apr/24

Commented by mr W last updated on 19/Apr/24

��

Answered by MM42 last updated on 19/Apr/24

f(x)=2x^2     ;A(a,2a^2 ) ,f′(a)=4a  g(x)=2x^2 −8x+16   ; B(b,2b^2 −8b+16)  ,g′(b)=4b−8  f′(a)=g′(b)⇒a=b−2   (i)  m_(AB) =((2b^2 −8b+16−2a^2 )/(b−a))=4a (ii)  (i),(ii)⇒a=1 & b=3  ⇒m_(AB) =4⇒L: y=4x−2  f=g⇒x=2  s_1 =∫_1 ^2 (2x^2 −4x+2)dx=(2/3)  s_2 =∫_2 ^3 (2x^2 −8x+16−4x+2)dx=(2/3)  ⇒s=(4/3) ✓

f(x)=2x2;A(a,2a2),f(a)=4ag(x)=2x28x+16;B(b,2b28b+16),g(b)=4b8f(a)=g(b)a=b2(i)mAB=2b28b+162a2ba=4a(ii)(i),(ii)a=1&b=3mAB=4L:y=4x2f=gx=2s1=12(2x24x+2)dx=23s2=23(2x28x+164x+2)dx=23s=43

Commented by mr W last updated on 19/Apr/24

��

Answered by MathematicalUser2357 last updated on 28/Apr/24

Commented by MathematicalUser2357 last updated on 26/Dec/24

L_A T^E X Version here (Also fixed mistakes) ↓  Q.206571 - What is the area S?  min{2x^2 }=0 so start point is (0,0)  min{2x^2 −8x+16}=8 so end point is (4,8)  Slope: 4, Y-intercept: 0. ⇒  y=4x ← There was a mistake! must be y=4x−2.  These two parabolas meet at x=2  So, S=∫_1 ^2 2x^2 dx+∫_2 ^3 (2x^2 −8x+16)dx−∫_1 ^3 (4x−2)dx  =[(2/3)x^3 ]_1 ^2 +[(2/3)x^3 −4x^2 +16x]_2 ^3 −[2x^2 −2x]_1 ^3   Note: I′m using built-in Complex number calculator  to find area. (to prevent negative number mistake)  (((2/3)×2^3 )−((2/3)×1^3 ))+(((2/3)×3^3 −4×3^2 +16×3)−((2/3)×2^3 −4×2^2 +16×2))−((2×3^2 −2×3)−(2×1^2 −2×1))  1.333333  So S=(4/3).

LATEXVersionhere(Alsofixedmistakes)Q.206571WhatistheareaS?min{2x2}=0sostartpointis(0,0)min{2x28x+16}=8soendpointis(4,8)Slope:4,Yintercept:0.y=4xTherewasamistake!mustbey=4x2.Thesetwoparabolasmeetatx=2So,S=122x2dx+23(2x28x+16)dx13(4x2)dx=[23x3]12+[23x34x2+16x]23[2x22x]13Note:ImusingbuiltinComplexnumbercalculatortofindarea.(topreventnegativenumbermistake)((23×23)(23×13))+((23×334×32+16×3)(23×234×22+16×2))((2×322×3)(2×122×1))1.333333SoS=43.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com