Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206579 by York12 last updated on 19/Apr/24

Evaluate : ∫_0 ^1 ((ln (1+x^2 ))/(1+x))d(x).

Evaluate:10ln(1+x2)1+xd(x).

Answered by Berbere last updated on 19/Apr/24

=[ln(1+x)ln(1+x^2 )]_0 ^1 −∫_0 ^1 ((ln(1+x)2x)/(1+x^2 ))dx  =ln^2 (2)−∫_0 ^1 ((ln(1+x)2x)/(1+x^2 ))=ln^2 (2)−A  B=∫_0 ^1 ((ln(1−x))/(1+x^2 ))2x,A+B=∫_0 ^1 ((2xln(1−x^2 ))/(1+x^2 ))dx  =∫_0 ^1 ((ln(1−x))/(1+x))dx=∫_0 ^1 ((ln(2)+ln((1/2)−(x/2)))/(2((1/2)+(x/2))))dx  =ln(2)ln(1+x)]_0 ^1 +∫_0 ^1 ((ln(1−((1/2)+(x/2)))/((1/2)+(x/2)))d((x/2)+(1/2))=ln^2 (2)−Li_2 (((x+1)/2))]_0 ^1   =ln^2 (2)−Li_2 (1)+Li_2 ((1/2))  B−A=∫_0 ^1 ((2xln(((1−x)/(1+x))))/(1+x^2 ))dx;t=((1−x)/(1+x))  ∫_0 ^1 ((2(1−t))/(1+t)).((ln(t))/((2(1+t^2 ))/((1+t)^2 ))).((2dt)/((1+t)^2 ))=2∫_0 ^1 (((1−t)(ln(t))/((1+t)(1+t^2 )))  =2∫_0 ^1 ((ln(t))/(1+t))+((−t)/(t^2 +1))ln(t)=−2∫_0 ^1 ((ln(1+t))/t)+∫_0 ^1 ((ln(1+t^2 ))/t)dt_(t^2 →t)   =−2∫_0 ^1 ((ln(1+t))/t)+(1/2)∫_0 ^1 ((ln(1+t))/t)dt=−(3/2)∫_0 ^1 ((ln(1−(−t)))/((−t)))d(−t)=  (3/2)Li_2 (−t)]_0 ^1 =((3Li_2 (−1))/2)  A=(1/2)((B+A)−(B−A))  =(1/2)(ln^2 (2)−Li_2 (1)+Li_2 ((1/2))−(3/2)Li_2 (−1))  ∫_0 ^1 ((ln(1+x^2 ))/(1+x))dx=ln^2 (2)−A  =((ln^2 (2))/2)+(π^2 /(48))−((Li_2 ((1/2)))/2)=(3/4)ln^2 (2)−(π^2 /(48))  Li_2 ((1/2))=(π^2 /(12))−((ln^2 (2))/2)

=[ln(1+x)ln(1+x2)]0101ln(1+x)2x1+x2dx=ln2(2)01ln(1+x)2x1+x2=ln2(2)AB=01ln(1x)1+x22x,A+B=012xln(1x2)1+x2dx=01ln(1x)1+xdx=01ln(2)+ln(12x2)2(12+x2)dx=ln(2)ln(1+x)]01+01ln(1(12+x2)12+x2d(x2+12)=ln2(2)Li2(x+12)]01=ln2(2)Li2(1)+Li2(12)BA=012xln(1x1+x)1+x2dx;t=1x1+x012(1t)1+t.ln(t)2(1+t2)(1+t)2.2dt(1+t)2=201(1t)(ln(t)(1+t)(1+t2)=201ln(t)1+t+tt2+1ln(t)=201ln(1+t)t+01ln(1+t2)tdtt2t=201ln(1+t)t+1201ln(1+t)tdt=3201ln(1(t))(t)d(t)=32Li2(t)]01=3Li2(1)2A=12((B+A)(BA))=12(ln2(2)Li2(1)+Li2(12)32Li2(1))01ln(1+x2)1+xdx=ln2(2)A=ln2(2)2+π248Li2(12)2=34ln2(2)π248Li2(12)=π212ln2(2)2

Commented by York12 last updated on 19/Apr/24

  Perfect !  but there is probably a typo somewhere  cause the final answer must be (3/4)ln^2 (2)−(π^2 /(48))

Perfect!butthereisprobablyatyposomewherecausethefinalanswermustbe34ln2(2)π248

Commented by Berbere last updated on 19/Apr/24

yes  you right i corrected it

yesyourighticorrectedit

Commented by York12 last updated on 19/Apr/24

thank you

thankyou

Commented by Berbere last updated on 19/Apr/24

withe Pleasur

withePleasur

Terms of Service

Privacy Policy

Contact: info@tinkutara.com