Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 206592 by NasaSara last updated on 19/Apr/24

Answered by namphamduc last updated on 20/Apr/24

∫_0 ^1 ((ln(x))/(1−x))dx=(4/3)∫_0 ^1 ((ln(x))/(1−x))dx−(1/3)∫_0 ^1 ((ln(x))/(1−x))dx  x→x^2 ⇒∫_0 ^1 ((ln(x))/(1−x))dx=(4/3)∫_0 ^1 ((ln(x))/(1−x))dx−(4/3)∫_0 ^1 ((xln(x))/(1−x^2 ))dx=(4/3)∫_0 ^1 ((ln(x))/(1−x^2 ))dx=(2/3)∫_0 ^∞ ((ln(x))/(1−x^2 ))  Let : I(a)=∫_0 ^∞  ((ln(1−a^2 +a^2 x^2 ))/(1−x^2 ))dx,I(0)=0,I(1)=2∫_0 ^∞ ((ln(x))/(1−x^2 ))dx  I′(a)=−∫_0 ^∞ ((2a)/(a^2 x^2 +1−a^2 ))dx=−(π/( (√(1−a^2 ))))  ⇒I(1)=−π∫_0 ^1 (1/( (√(1−a^2 ))))da=−πsin^(−1) (a)∣_0 ^1 =−π.(π/2)=−(π^2 /2)  ⇒∫_0 ^1 ((ln(x))/(1−x))dx=(1/3)I(1)=−(π^2 /2).(1/3)=−(π^2 /6)  ⇒∫_0 ^1 ((ln(x))/(x−1))dx=(π^2 /6)

01ln(x)1xdx=4301ln(x)1xdx1301ln(x)1xdxxx201ln(x)1xdx=4301ln(x)1xdx4301xln(x)1x2dx=4301ln(x)1x2dx=230ln(x)1x2Let:I(a)=0ln(1a2+a2x2)1x2dx,I(0)=0,I(1)=20ln(x)1x2dxI(a)=02aa2x2+1a2dx=π1a2I(1)=π0111a2da=πsin1(a)01=π.π2=π2201ln(x)1xdx=13I(1)=π22.13=π2601ln(x)x1dx=π26

Commented by NasaSara last updated on 20/Apr/24

thank you

thankyou

Answered by Berbere last updated on 20/Apr/24

∫_0 ^1 ((ln(x))/(1−x))dx=(∂/∂s)∫_0 ^1 ((x^s −1)/(x−1))dx∣_(s=0) =(∂/∂s).−∫_0 ^1 ((x^s −1)/(1−x))dx  =(∂/∂s)Ψ(1+s)=Ψ′(1+s)∣_(s=0) =Ψ^((1)) (1)=ζ(2)=(π^2 /6)

01ln(x)1xdx=s01xs1x1dxs=0=s.01xs11xdx=sΨ(1+s)=Ψ(1+s)s=0=Ψ(1)(1)=ζ(2)=π26

Commented by NasaSara last updated on 20/Apr/24

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com